# Effects of in situ Surface Passivation of AlGaN/GaN MOS-HEMT: A Simulation Study

S. S. Pannirselvam, Xinke Liu, Yee-Chia Yeo and Leng Seow Tan

Dept. of Electrical and Computer Engineering, National University of Singapore (NUS), 117576 Singapore

Phone: +65-6516-2563, Fax: +65-6779-1103 E-mail: eletanls@nus.edu.sg

## 1. INTRODUCTION

AlGaN/GaN heterostructure devices are very attractive for high power [1] and high frequency [2] applications. Advances in metal-oxide semiconductor high electron mobility transistor (MOS-HEMT) technology have led to low gate leakage current [3]. However, it is believed that surface-related charge trapping at the insulator/AlGaN interface limits the performance of AlGaN/GaN MOS-HEMTs [4]. It was shown recently that *in situ* passivation of this interface during fabrication can enhance the performance of the AlGaN/GaN MOS-HEMT. [5].

In this paper, TCAD simulations using SILVACO ATLAS was used to fit the experimental data in ref. 5 so as to study the effects of surface passivation on the experimentally fabricated AlGaN/GaN MOS-HEMTs.

## 2. EXPERIMENT OVERVIEW

The process flow for the experimentally fabricated  $Al_{0.25}Ga_{0.75}N/GaN$  MOS-HEMTs is shown in Fig. 1. The details of the fabrication process have been reported previously [5]. *In situ* vacuum anneal and SiH<sub>4</sub> gas treatment were used as the surface passivation technique. Fig. 2 shows the effects observed experimentally in passivated devices, compared to unpassivated devices, which did not undergo the passivation process. These effects were increase in the magnitude of the threshold voltage ( $V_{th}$ ) (more negative), increase in the saturation drain current ( $I_{ON}$ ), increase in extrinsic transconductance ( $g_m$ ) and improvement in Sub-threshold Swing (*SS*).

## 3. SIMULATION

Fig. 3(a) shows the simplified cross-sectional device structure that was modelled in the TCAD simulation to match the experimental device. The polarization charge densities at the HfAlO/AlGaN, AlGaN/GaN and GaN/substrate were calculated using the equations reported by Ambacher et al. [6], together with Shimada's piezoelectric polarization model [7]. Fig. 3(b) shows the polarization sheet charge densities used in the simulations. In order to obtain a good fitting with the experimental  $V_{th}$ , the polarization charge densities in the simulation were reduced by ~15%, from the initial values calculated using Ambacher's equations [6], at the HfAlO/AlGaN, AlGaN/GaN and GaN/substrate interfaces. Thus, the polarization charge densities at the HfAlO/AlGaN, AlGaN/GaN and GaN/substrate interfaces were incorporated as  $-2.58 \times 10^{13}$ ,  $1.04 \times 10^{13}$  and  $1.54 \times 10^{13}$  cm<sup>-2</sup> respectively in the simulation. This discrepancy between the theoretical and experimental devices can be attributed to inhomogeneities in the AlGaN/GaN heterostructure, interface roughness, possible overestimation of theoretical values, etc [8]. Fig. 3(c) shows the cross-sectional bandgap energy profile of the unpassivated device, under the gate electrode at zero gate bias. In this simulation, discrete deep donor-like traps ( $E_c - 0.37$  eV) and discrete deep acceptor-like traps  $(E_v + 1.0 \text{ eV})$  were incorporated to represent the AlGaN surface defects due to nitrogen-vacancies and galliumvacancies respectively [9][10].

In the simulation, low-field GaN mobility model reported by Albrecht et al. [11] and high-field GaN mobility reported by Farahmand et al. [12] were used.

#### 4. **RESULTS AND DISCUSSION**

Fig. 4 shows the  $I_D$ - $V_G$  plots for the unpassivated and passivated MOS-HEMT devices at  $V_{DS} = 5$  V. The plots show a good fit between the experimental and simulated devices. The extracted  $V_{th}$  from the simulation are -4.12 and -4.78 V for the unpassivated and

passivated devices respectively. These values are very close to the experimental  $V_{th}$  [5] (Table 1). Also, the increase in  $I_{ON}$  in the passivated device, for the same gate overdrive, could be due to increase in mobility because of decrease in carrier scattering. To achieve this close fitting, the donor-like trap densities in the unpassivated and passivated devices were set as 2.96×10<sup>13</sup> cm<sup>-2</sup>. Also, the simulation fittings show that the unpassivated device has an excess of  $6.0 \times 10^{12}$  cm<sup>-2</sup> of acceptor-like traps compared to the passivated device. Therefore, the  $I_D$ - $V_G$  plot fitting shows that the *in* situ passivation mainly reduced the acceptor-like traps in the HfAlO/AlGaN interface. Fig. 5 shows the transconductance  $(g_m)$ - $V_G$  transfer characteristics for the unpassivated and passivated devices. These plots show good agreement between the experimental and the simulation results (Table 1). The extracted  $g_m$ peaks from the simulation for the unpassivated and passivated devices are 62.6 and 97.8 mS/mm respectively. This increase in  $g_m$ can be attributed to an increase in mobility due to reduction in carrier scattering.

Fig. 6 shows the conduction band and Fermi energy level under the gate electrode at zero gate bias. The reduction in the acceptor-like trap density results in a significant lowering of the energy band at the HfAlO/AlGaN interface. The triangular quantum well (Fig. 6 (inset)) at the AlGaN/GaN interface shows that the reduction of the acceptor-like trap density at the HfAlO/AlGaN interface also affects the energy band profile at the AlGaN/GaN interface. The calculated two-dimensional electron gas (2DEG) sheet carrier densities ( $n_s$ ) at the AlGaN/GaN interface are 7.3×10<sup>12</sup> and  $8.5 \times 10^{12}$  cm<sup>-2</sup> for the unpassivated and passivated devices respectively. The calculated 2DEG  $n_s$  shows reasonable values with a difference of < 20% compared to the experimental devices, which were measured using room-temperature Hall measurement [5] (Table 1). Fig. 7 shows the  $log(I_D)-V_G$  plots for  $V_{DS} = 5$  V in the sub-threshold region. The extracted values of the Sub-threshold Swing (SS) for the unpassivated and passivated devices from the simulation are 134.7 and 100.2 mV/dec, in good agreement with experimental values. Figure 8 summarises the observations that were made during this simulation study.

## 5. SUMMARY

This simulation study provides a plausible reason for the changes in the electrical characteristics of the passivated device compared to the unpassivated device. The *in situ* passivation process could have led to a reduction in the acceptor-like trap density at the insulator/AlGaN interface, which in turn results in enhanced performance of the passivated device.

## Acknowledgement

The work is supported by the Defence Science and Technology Agency (DSTA), Singapore.

### References

- [1] Y.F. Wu, et al., IEEE Trans. Elect. Dev., vol. 48, pp. 586, 2001.
- [2] T. Palacios, et al., IEEE Elect. Dev. Lett., vol. 27, pp. 13, 2006.
- [3] Y. Yue, et al., IEEE Elect. Dev. Lett., vol. 29, pp. 838, 2008.
- [4] R. Vetury, et al., IEEE Trans. Elect. Dev., vol. 48, pp. 560, 2001.
- [5] X. Liu, et al., Appl. Phys. Lett., vol. 99, pp. 093504, 2011.
- [6] O. Ambacher, et al., J. Appl. Phys., vol. 87, pp. 334, 2000.
- [7] K. Shimada, et al., J. Appl. Phys., vol. 84, pp. 4951, 1998.
- [8] A. T. Winzer, et al., Appl. Phys. Lett., vol. 86, pp. 181912, 2005.
- [9] H. Hasegawa, et al., J. Vac. Sci. Technol. B, vol. 21(4), pp.1844, 2003.
- [10] M. Miczek, et al., J. Appl. Phys., vol. 103, pp. 104510, 2008.
- [11] J. D. Albrecht, et al., J. Appl. Phys., vol. 83 pp. 4777, 1998.
- [12] M. Farahmand, et al., IEEE Trans. Elect. Dev., vol. 48, pp. 535, 2001.







Fig. 3.(a) Cross-sectional schematic of simulated AlGaN/GaN MOS-HEMT structure. (b) Polarization sheet charges at HfAIO/AlGaN, AlGaN/GaN and GaN/substrate interfaces. (c) Bandgap structure of AlGaN/GaN MOS-HEMT showing the relative energy levels of the donorlike and acceptor-like traps.



Fig. 6. Simulated conduction band alignment of unpassivated and passivated AlGaN/GaN MOS-HEMT devices. Triangular quantum at the AlGaN/GaN interface (inset).



Fig. 2. Summary of experimental results observed in AlGaN/GaN MOS-HEMTs due to the *in situ* passivation. The *in situ* passivation resulted in (a) increase in  $V_{th}$  (more negative), (b) increase in  $g_m$ , (c) decrease in SS and (d) increase in  $I_{ON}$ [5].



Fig. 4.  $I_D$ - $V_G$  characteristics of unpassivated and passivated AlGaN/GaN MOS-HEMT at  $V_{DS} = 5$  V for experimental [5] and simulated devices.



Fig. 5.  $g_m$ - $V_G$  transfer characteristics of simulated and experimental [5] AlGaN/GaN MOS-HEMT at  $V_{DS} = 5$  V. Peak  $g_m$  values for unpassivated and passivated devices (simulation) are 62.6 and 97.8 mS/mm respectively.



Fig. 7.  $Log(I_D)-V_G$  curves of simulated and experimental [5] AlGaN/GaN MOS-HEMT at  $V_{DS} = 5$ , near the *SS* region. *SS* values for the unpassivated and passivated devices (simulation) are 134.7 and 100.2 mV/dec respectively.

Table 1: Comparison of experiment [5] and simulation  $V_{th}$ ,  $n_s$ , peak  $g_m$  and SS.

|                                                          | Experiment            |                       | Simulation            |                       |
|----------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                                          | Unpassivated          | Passivated            | Unpassivated          | Passivated            |
| Threshold Voltage $(V_{th})$<br>(V)                      | -4.14                 | -4.77                 | -4.12                 | -4.78                 |
| 2DEG Sheet Carrier Concentration $(n_s)(\text{cm}^{-2})$ | $0.86 \times 10^{13}$ | $1.04 \times 10^{13}$ | $0.73 \times 10^{13}$ | $0.85 \times 10^{13}$ |
| Peak Transconductance $(g_m)$<br>(mS/mm)                 | 65.0                  | 95.0                  | 62.6                  | 97.8                  |
| Sub-threshold Swing (SS)<br>(mV/dec)                     | 204.1                 | 111.5                 | 134.7                 | 100.2                 |



Fig. 8. Flow chart showing the summary of the studies performed using the TCAD simulation. Decrease in acceptor-like trap density leads to increase 2DEG sheet carrier concentration  $(n_s)$  at the AlGaN/GaN interface, and reduction in Sub-threshold Swing (SS) and carrier scattering. Increase in sheet carrier concentration  $(n_{\rm c})$ at AlGaN/GaN interface increases threshold voltage  $(V_{th})$  (more negative). Decrease in carrier scattering increases mobility, which in turn increases ON-state current (ION) and transconductance  $(g_m)$ .