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Introduction 

    AlGaN/GaN high electron mobility transistors 
(HEMTs) have attracted a great interest for next genera-
tion of power electronics due to its high power, high fre-
quency, and high temperature capability [1], [2]. For re-
ducing the cost and large size availability, the silicon is 
widely used for the AlGaN/GaN HEMTs substrate [3]. 
Recently, Lu et al. [4] realized a substrate transfer tech-
nology from Si to glass. Srivastava et al. [5] demonstrated 
a silicon substrate removal (S.R.) technology, and the 
breakdown voltage is over 1100 V. It is suggested the 
maximum breakdown voltages of the GaN on Si HEMTs 
are limited by the Si substrate because of the lower silicon 
electrical field strength (0.3 MV/cm) [6], [7]. However, 
the obvious current reducing phenomenon caused by the 
self-heating effect after substrate removal or transfer is 
observed.  
    In this work, a novel technology using Si substrate 
removal with semiconductor on insulator (S.O.I.) technol-
ogy is demonstrated and the low thermal effect and high 
breakdown voltage are achieved. 
 

Device Structure and Fabrication 
    The process flows of S.O.I. technology is shown in 
Fig. 1. The sample used in this work was a commercial 
AlGaN/GaN HEMT wafer grown by MOCVD on (111) 
silicon substrate. The epitaxial structure includes a 1.8 μm 
buffer, a 0.8 μm GaN channel layer, and a 18 nm AlGaN 
barrier layer. The wafer demonstrated a sheet resistance of 
396 ohm/square, a sheet charge density of 1.03×1013 cm-2 
together with a Hall mobility of 1534 cm2/V-s at 300K.  
    The device size is 2×100 μm and was processed by 
conventional optical lithography and lift-off process. The 
ohmic contacts were realized by using Ti/Al/Ni/Au fol-
lowed by a 850 oC, 30 sec RTA annealing in N2 ambient. 
To define an active region, high density coupled plasma 
was used for 200 nm depth mesa etching. Then Ni/Au was 
deposited by electron-beam evaporator for 1 μm-long gate 
electrode. The distances between gate to source and drain 
both are 3μm. A 20/300 nm Ti/Au was deposited for inter-
connection and probe pads. Then, a 300 nm SiO2 was de-
posited using plasma enhance chemical vapor deposition 
(PECVD) chamber at 200oC for device passivation layer. 
For the Si substrate removal approach, the substrate is lo-
cally etched from the backside using SF6 plasma in RIE. 
Finally, a 300 nm-SiO2 was deposited using PECVD and a 
10 μm-Cu metal was deposited by electron-beam evapora-
tor. 
 

Experimental Results 
    The Fig. 2 shows the IDS–VGS and gm–VGS character-
istics of conventional, S.R., and S.O.I. devices, respec-
tively. An obvious current reducing phenomenon caused 
by the self-heating effect is observed for S.R. device. 
However, conventional and S.O.I. devices do not display 
this phenomenon. It is believed that the 10 μm-Cu metal 
eliminates the self-heating effect. The results of Fig. 2 also 
corresponded to the C–V curves shown in inset of Fig. 2. 
The Fig. 3 presents the IDS–VDS characteristics of three 

devices. The drain current of the S.R. device smaller than 
the conventional and S.O.I. devices, which is mainly due 
to the self-heating effect. But this self-heating effect does 
not be occurred in S.O.I device, due to the self-heating 
effect eliminate by a 10 μm-Cu metal. 

The Figure 4 exhibits the off-state breakdown char-
acteristics of three devices at VGS = –5. The breakdown 
measurements were carried out using the Keithley 2410 
system. The off-state breakdown voltage (VBK) is defined 
as the voltage at which a leakage current of 1 mA/mm 
flows between two ohmic contacts. As shown in Fig. 4, the 
VBK is 169, 382 and 326 V for conventional, S.R. and 
S.O.I., respectively. The S.O.I. device presents a high VBK 
which is comparable with S.R. device. The temperature 
dependent characteristics of maximum drain current for 
three devices from 25 oC to 125 oC are shown in Fig. 5. It 
can be concluded that the S.O.I. technology significantly 
eliminates the self-heating effect which caused by sub-
strate removal. The Fig. 6 exhibits the low frequency noise 
(LFN) measurement of three devices at four different bi-
ases. As shown in Fig. 6, the LFN performance of S.R. and 
S.O.I. device is much lower than the conventional device 
due to remove the substrate and also remove the traps of 
substrate.  
 

Conclusion 
    We have successfully demonstrated the significant 
enhancement of VBK and eliminated the self-heating effect 
by S.O.I. technology. A VBK of 326 V has been measured 
for a 3 μm distance between gate to drain. The temperature 
dependent characteristics shows a lower self-heating effect 
for S.O.I. device. The LFN performance of S.O.I. presents 
a lower noise spectrum due to remove the traps of sub-
strate. 
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Fig.1. Process flows of the semiconductor on insulator technology. 
(a) Conventional AlGaN/GaN HEMT on Si substrate. (b) Substrate 
removal (S.R.). (c) Semiconductor on insulator (S.O.I.). 
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Fig.2. IDS–VGS and gm–VGS characteristics of three devices at VDS = 8 V. 
The inset shows the C–V curve of three devices at 1 MHz. 
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Fig.3. IDS–VDS characteristics of three devices. 

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

600

0

100

200

300

400

500

600VDS = 8 V

Gate to source voltage, VGS (V)

-3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8
1.0

1.5

2.0

2.5

3.0

3.5
 

 

  

Frequency = 1 MHz

Gate voltage (V)

Ca
pa

ci
ta

nc
e (

pF
)  Conventional

 S.R.
 S.O.I.

D
ra

in
 to

 S
ou

rc
e 

cu
rr

en
t, 

I D
S (m

A
/m

m
)

Tr
an

sc
on

du
ct

an
ce

, g
m
 (m

S/
m

m
)

 
 

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

S.O.I.

Conventional

VGS = −5

326 V
( 0. 5 MV/cm)

S.O.I.

382 V
( 0. 59 MV/cm)

S.R.

169 V
( 0. 26 MV/cm)

Conventional

Off-state
breakdown

326 V
( 0. 5 MV/cm)

S.O.I.

382 V
( 0. 59 MV/cm)

S.R.

169 V
( 0. 26 MV/cm)

Conventional

Off-state
breakdown

Drain to source voltage, VDS (V)
D

ra
in

 to
 S

ou
rc

e 
cu

rr
en

t, 
I D

S (m
A

/m
m

)

 

 

S.R.

Fig.4. Off-state breakdown characteristics of three devices at VGS = –5 

Fig.5. Temperature dependent characteristics of maximum drain current 
for three devices from 25 oC to 125 oC. 
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Fig.6. Low frequency noise (1/f noise) measurement of three devices 
at four different biases. 
(a) VGS = 1 V and VDS = 2 V. (b) VGS = 1 V and VDS = 8 V. 
(c) VGS = –2 V and VDS = 2 V. (d) VGS = –2 V and VDS = 8 V 
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