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1. Introduction 

Semiconductor devices are getting smaller and smaller. 
There is a device whose channel length is shorter than electron 
mean free path. In such a ballistic region, electrons are expected to 
behave obeying the law of quantum physics. However, once we 
apply normal voltage (~1V) between source and drain, in the 
channel emerges extremely strong electric field (~1MV/cm). Sano 
reported that in nanoscale channel, electrons have high kinetic 
energy even in the drain electrode and not be in their equilibrium 
state [1]. In this situation, electron waves cannot conserve their 
coherence and the particle nature will appear. We put attention to 
this quantum-classical crossover region and use wave packets, 
which have crossover nature between waves and particles. In the 
numerical calculation, we take Coulomb interaction to investigate 
the behavior of electrons in this parameter region.  

2. Method 
 In this study, we start with the one-dimensional effective 
mass Hamiltonian as 
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where m* is the effective mass of the electron and . V(x) is an 
effective external potential. We discretize this effective-mass 
Hamiltonian on a discrete lattice whose lattice constant is a, 
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This discretized Hamiltonian can be mapped onto a near-
est-neighbor tight-binding Hamiltonian, 
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We employed the above-discretized tight binding Hamiltonian in 
this study. The number of lattice site is 100 in our calculation that 
is conceived to sufficient to describe the basic characteristics of 
the system. We also set the lattice constant a to unity. 
We calculate the time evolutions of the each electron wave func-
tions by solving the time-dependent Hartree-Fock equation in 
order to take into account the coulomb interaction [3], 

i !
!t
i(1) = HHF i

(1) = T +G "F( ) i(1)  

where, HHF is the one-body Hartree-Fock Hamiltonian which is 
composed by the tight binding Hamiltonian T, coulomb potential 
G and exchange potential F. We have taken the atomic unit 
! = e =1   in the present work. The three terms in equation (4) are 
expressed as 
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where γ is hopping parameter, U is the strength of the elec-
tron-electron repulsion, which qualitatively represents the magni-
tude of screening effects. The i and j indicate the orbitals of the 
electron wave functions and its suffixes (1) and (2) correspond to 
the position x1 and x2, respectively. Further, c+ and c represent 
creation and annihilation operators of electrons, respectively. In 
our calculation, the Hamiltonian is scaled by the hopping 
parameter γ. 
The formal solution of the time-dependent Hartree-Fock equation 
is expressed as 
i t +!t( ) = exp "iHHF!t( ) i t( )  

where ∆t is a small increment of time. We performed Taylor seri-
es expansions for the time evolution operator up to fourth order. 
We study the dynamical properties of the two electron wave 
packets by investigating the charge distributions of electron. 
3. Results and Discussion 

Figure 2 and Fig. 3 show the time evolution of wave packets. 
In this study, we used two wave packets; each peak of the packet 
means one electron in the figures. The left edge of the figure is 
considered a source electrode and the other edge is considered as 
drain electrode. The electric field is set as fixed potential, which 
goes down linearly from left side (source) to right side (drain). We 
also show Fourier transformed results after showing the real space 
results. Whole dynamics are performed in the first Brillouin zone. 
Figure 2 is the results when the strength of Coulomb interaction is 
weak (U=1). Electron wave packets go to right side of the system, 
by the electric field. Figure 3 is the results with strong Coulomb 
interaction (U=10). In this case, the electron wave packet goes 
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Fig. 1: Schematic illustration of difference among three pictures of 
electrons; particle, wave and the wave packet dynamics. 
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right side by the electric field and feels strong Coulomb repulsion, 
which interacts each other.  

To see more detailed nature of the behavior of wave packets, 
we obtained some quantities of each electron. In Fig. 4, we show 
the time evolution of averaged position of the electrons. With 
strong Coulomb interaction, the left (latter) electron is less accel-

erated compared with the weak Coulomb interaction case. On the 
other hand, the right (former) electron has moved more in strong 
interaction case than in the weak interaction case. This suggests 
that Coulomb interaction modulates the behavior of the electrons. 

Figure 5 shows the centroid velocity in the case of strong 
Coulomb interaction. The velocity is strongly modulated by the 
interaction and the electric field. At the critical time, right and left 
packets have the same velocity. Their relative velocity (VRight – 
VLeft) is shown in Fig. 6. With the strong Coulomb interaction, the 
velocity oscillates in early time region, although this does not 
appear with weak Coulomb interaction. 

The velocity of the electrons in a ballistic region can be re-
duced by the effect of Coulomb interaction. We must pay much 
care for how Coulomb interaction is effective in considering sys-
tem, when we consider the behavior of electrons transporting in 
nanoscale channel. 
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Fig. 5: Time evolution of centroid velocity when U=10.  

Fig. 6: Time evolution of relative velocity of each centroid of 
wave packets. 

Fig. 4: Centroid of each electron. The above pair is right 
packet and the below pair is left packet. 

Fig. 2: Two electron wave packets dynamics with weak 
Coulomb interaction (U=1). Above figures are in real space 
dynamics and below figures are in k-space. The horizontal 
axis in upper figure is mapping site, in below figure that 
means wave number in one Brillouin zone. The vertical axis 
means each electron’s density in both figures. 

Fig. 3: Two electron wave packets dynamics with strong 
Coulomb interaction (U=10).  
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