Excellent Scalability Including Self-Heating Phenomena of Vertical-Channel Field-Effect-Diode (FED) Type Capacitorless One Transistor DRAM Cell

Takuya Imamoto^{1, 2} and Tetsuo Endoh^{1, 2}

¹Graduate School of Engineering, Tohoku University, ²JST-CREST

Aramaki aza Aoba 6-6, Aoba-ku, Sendai, 980-8579, Japan

Phone: +81-22-795-4401 E-mail: tetsuo.endoh@cies.tohoku.ac.jp

Abstract

The excellent scalability of the vertical channel Field Effect Diode (FED) type 1T-DRAM including Self-Heating Effect (SHE) is presented for the first time. The vertical channel FED type shows the excellent hold characteristics (100msec at 358K) even when silicon pillar diameter is scaled down to 12nm. Moreover, we also show that by employing the vertical FED type, increase of lattice temperature due to SHE (ΔT_L^{Max}) can be suppressed to a negligible small value of 0.6K.

1. Introduction

Capacitorless 1T-DRAM was proposed to overcome the scaling limitations of conventional 1T-1C DRAM [1]. Previously, we proposed the low power vertical channel FED type 1T-DRAM with Negative Hold Bit line (NHB) bias scheme for excellent retention and read disturb characteristics [2]. On the other hand, SHE in non-planar FETs becomes worse than those of conventional bulk planar MOSFETs [3]. In this paper, we show the excellent scalability of vertical channel FED type 1T-DRAM. Moreover, we also show the excellent thermal properties of FED type 1T-DRAM by comparing with the Bipolar Junction Transistor (BJT) type via 3-dimensional device simulator [4].

2. Memory Cell Operation of

Vertical-Channel FED Type 1T-DRAM Cell

Figure 1 (a) shows the schematics of the vertical channel FED type 1T-DRAM cell (vertical FED type). In the vertical FED type, Bit Line (BL), Word Line (WL), common Control Gate (CG), and Source Line (SL) are located vertically. Therefore, an ideal cell size of $4F^2$ can be achieved. Simulated memory cell design parameters and operation voltages are shown in Table I. Figure 2 shows the BL current ($|I_{BL}|$) versus BL voltage V_{BL} characteristics for three different WL voltages (V_{WL}) of vertical FED type with 20nm silicon pillar diameter (D). As the V_{BL} is increased in negative, |I_{BL}| increases sharply at a point which is determined by V_{WL} Moreover, $|I_{BL}|$ - V_{BL} curve shows hysteresis when V_{BL} is swept back to 0.0V. Memory cell operation of the vertical FED type (D=20nm) at 300K is shown in Fig. 3 (a) and (b). Data can be written and read within 20nsec access time. The current of write "1" and "0" are 3.77µA/cell and 0A/cell. The current of read "1" and "0" are 2.45µA/cell and 5.85pA/cell.

3. Memory Cell Performances and Scalability of

Vertical-Channel FED Type 1T-DRAM Cell

The retention and read disturb characteristics of the vertical FED type (D=20nm) are shown in Fig. 4(a) and (b). The vertical FED type shows 2,000msec retention time and 100msec read disturb characteristics at 358K. In the read disturb characteristics, each node voltages except for V_{BL} are set to "Hold" and V_{BL} is set to "Read" in Table I (a). Figure 5 and Fig. 6 show the scalability of the vertical FED type. The vertical FED type shows the excellent hold characteristics (100msec at 358K) with large enough read current margin (1µA/cell) even when D is scaled down to 12nm. From all, it is shown that the vertical FED type 1T-DRAM cell has an excellent scalability.

4. Evaluation of SHE in 1T-DRAM Cell with Difference Structure and Operation Principle

To evaluate SHE of 1T-DRAM cell, Write "1" operation with difference structures (bulk vertical or SOI planar) and operation principles (FED or BJT) as shown in Fig. 1 (a) and (b) are calculated. Table II shows operation voltages and design parameters used in this study. Figure 7 (a) and (b) show the time dependence of maximum lattice temperature in the memory cell (T_L^{Max}) and $|I_{BL}|$ of FED and BJT type with different structure. In the FED type, both bulk vertical and SOI planar structure show negligibly small SHE, and the peak value of T_L^{Max} is 300.6K for bulk vertical and 300.4K for SOI planar. This is because FED type 1T-DRAM can operate low voltage (-1.1V) while BTJ type needs high V_{BL} (2.0V) to trigger impact ionization. Therefore, FED type shows excellent thermal characteristics. On the other hand, in the BJT type, T_L^{Max} is 330.6K for bulk vertical and 357.8K for SOI planar. Moreover, in the FED type, $|I_{BL}|$ increases sharply when BL is applied while in the BJT type increases gradually. Figure 8 shows the peak value of T_L^{Max} during Write "1" operation in the bulk vertical FED type as a function of the D. Even when D is scaled down to 12nm, the peak value of T_L^{Max} is constant value of 300.6K and shows negligibly small SHE. Table III shows the comparison of memory performances.

5. Conclusions

The excellent scalability of vertical channel FED type 1T-DRAM cell considering thermal characteristics is presented for the first time. The vertical FED type shows the excellent hold characteristics (100msec at 358K) with large enough read current margin (1 μ A/cell) and negligibly small SHE (T_L^{Max} =300.6K) even when D is scaled down to 12nm. Acknowledgements

This work has been supported in part by a grant from "Research of Innovative Material and Process for Creation of Next-generation Electronics Devices" of CREST under the JST. **References**

- [1] T. Ohsawa, et al., IEEE J. Solid-State Cir., p. 1510, 2002.
- [2] T. Imamoto, et al., Jpn. J. Appl. Phys., 52, p. 04CD08-1.
- [3] S. Kolluri, et al., IEDM Tech. Dig., 2007, p. 177.
- [4] Sentaurus ver.2012.06G [http://www.synopsys.com].
- [5] M. H. Cho, et al., Workshop on SNW, 2012, p. 17.
- [6] W. Kwon, et al., Jpn. J. Appl. Phys., 49, p. 04DD04-1.

BL

WL

CG

BG

SL

-1.1V / -0.6V -1.1V / 0.0V

0.0V/ -2.0V

0.3V

0.0

0.0V

	· == ()pe		,	
Structure	Planar	Vertical	Planar	Vertical
Wafer	SOI	Bulk	SOI	Bulk
Cell Size	>8F ²	4F ²	>6F ²	4F ²
I _{Re1} -I _{Re0}	1µA/cell	1μA/cell	1µA/cell	1μA/cell
Ret. Time (358K)	<0.1sec[2]	<2sec	<0.6sec[5] (300K)	<0.1sec[6]
ΔT_L^{Max}	0.4K	0.6K	57.8K	30.6K

9nm

20nm

3nm

10nm

5nm