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Abstract 

Fluorine (F) implantation with different dose post 
gate oxidation is used for investigating the performance 

of saddle-fin (S-Fin) array devices including 

gate-induced drain leakage (GIDL) and retention fail 

bit counts. Significantly lower retention fail counts of 

35% were achieved in using a medium dosage of F im-

plantation. Additional 18% retention fail count reduc-

tion was represented by F implantation with A degree 

tilt angle and 2X keV of energy. Trap passivation by F 

atoms in the source and the drain areas (S/D) could lead 

to the improvements. 

 

1. Introduction 

To catch up with Moore’s law, the channel doping of a 

dynamic random access memory (DRAM) array device 

needs to be increased to help suppress the short-channel 

effects (SCEs). [1] The relatively high electric field of the 

junction leads to a shorter data retention, and higher lea-

kage. In general, junction leakage, gated-induced drain 

leakage (GIDL), and interface states are the most dominant 

components of the leakage path for the retention time loss. 

To improve the leakage and retention time [2], structure 

optimization [1], asymmetric halo doping [3], and gate di-

electric modification [4] were proposed. In this study, F 

implantation post gate oxidation was investigated with sev-

eral experiments.  

 

2. Experiments 

Figure 1 shows a 3D schematic representation of the 

S-Fin device. After the recess channel patterning and etch-

ing, the gate oxide was grown using low-pressure wet oxi-

dation and following additional F implantation. Most F 

dosage was kept at the top of the fin and the S/D verified by 

simulation. Since oxide thickness will be increased by F 

dosage, a decrease of oxide thickness in oxidation is per-

formed to maintain in the same level. To make less impact 

of S-Fin oxide thickness by F implantation and to further 

investigate the location of trap passivation, the energy of X 

and 2X were designed to combine tilt angle of A and 2A. 

 

3. Results and Discussion  

The IDS versus (VGS-VTH) curves of the S-Fin devices 

with different F dosage are shown in Fig. 2. In the case of F 

implantation, GIDL is minimized from 10 to 20 times. The 

lowest GIDL is observed in medium F dosage. 

 
Fig. 1 S-Fin device schematic representation. The fin height for 

channel width and recess channel for channel length are shown in 

the TEM image of the X- and Y-axes, respectively. 

 

 

Fig. 2 IDS versus VGS-VTH curves of S-Fin devices. The lowest 

GIDL is observed in a medium dosage of F implantation.  

Increase in effective oxide thickness (EOT), change of 

dopant profiles and trap passivation could be the mechan-

isms of GIDL improvement by using F implantation. VT 

and time to breakdown (TBD) increases with F dose as 

shown in Fig. 3. Therefore, the gate oxide thickness from 

tunneling electron microscope (TEM) picture shows thicker 
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oxide in top area of S-fin and no clear difference in side-

wall area for all groups with different F dosage. The com-

parison is listed in Table 1. 

 
Table 1 Comparison on gate oxide thickness of S-Fin device by 

TEM and normalized retention fail bit counts. 

 w/o F 
F dose 

L 

F dose 

M 

F dose 

H 

S-Fin oxide thickness 

difference (%) 
0 -1.9 +9.6 +11.8 

Normalized retention fail 

bit counts difference (%) 
0 -23.6 -34.6 -24.8 

 

 
Fig. 3 Weibull distribution for time to breakdown of S-Fin devices. 

TBD increases by F dosage results from oxide thickness increases. 

 

 

 
Fig. 4 (a) BV and (b) VT of S-Fin devices with medium F dosage 

and different oxide thickness. 

In the experiment of gate oxide thickness changes, 

electrical effective oxide breakdown voltage (BV) of a de-

fined gate current and VT distribution of S-Fin devices are 

shown in Fig. 4. No clear difference of retention fail bit 

counts and GIDL can be seen in all groups. It could be ex-

plained by electric field in sidewall oxide keep stable. 

However, a considerably high F dosage implantation results 

in damage and the corresponding retention fail bit counts 

increase, which is similar to the results by A. Weber et al. 

[5]. 

As shown in Fig. 5, the lowest normalized retention fail 

bit counts with 45% reduction compared to control samples 

is observed in 2X keV energy with A degree tilt angle, 

which could be explained F dose away from oxide interface 

and into Si area to passivate traps. The less impact in oxide 

thickness and S-Fin device from this tilted F implantation 

could be a potential candidate for retention performance 

improvement. 

 
Fig. 5 Normalized retention fail counts of S-Fin devices with dif-

ferent energy and tile angle in F implantation. 

 

4. Conclusions 

   Additional F implantation processed after gate oxide 

deposition in an S-Fin device was successfully demon-

strated a reduction of 23.6 to 34.8%. The dosage of F im-

plantation had a strong correlation with the retention per-

formance, which could be mainly explained by the GIDL 

determined by trap passivation. Moreover, the F energy and 

tilt angle to control the location of the trap passivation in a 

high electric field area had been presented. The optimized 

condition for lowest normalized retention fail bit counts 

with 45% reduction is shown in the F implantation with 

energy of 2X keV and tilt angle of A degree. 
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