Chemical Vapor Deposition GeTe/Sb$_2$Te$_3$ Super-Lattice Phase Change Memory

Masahito Kitamura, Takahiro Morikawa, Takasumi Ohyanagi, Mitsuharu Tai, Masaharu Kinoshita, Kenichi Akita, and Norikatsu Takaura

Low-power Electronics Association & Project
West 7, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
Phone: +81-29-879-8262 E-mail: kitamura.masahito@leap.or.jp

Abstract
This paper describes the fabrication and electrical properties of a CVD GeTe/Sb$_2$Te$_3$ Super-Lattice Phase Change Memory. We present its excellent crystal structure and non-volatile operations for the first time in this paper.

1. Introduction
A GeTe/Sb$_2$Te$_3$ Super-lattice Phase Change Memory (SL PCM) has been extensively investigated as the next generation of non-volatile memory. SL was proposed by J. Tominaga [1, 2], and it is composed of thin GeTe and Sb$_2$Te$_3$ films. The GeTe is aligned in the direction of the c-axis of the Sb$_2$Te$_3$ in SL. This results in the short-range motion of the Ge atoms for changing the resistance states (Fig. 1). A crystal-to-crystal change occurs in SL, which leads to a reduction in the write energies to less than 1/10 that for conventional GeSbTe [3, 4].

On the other hand, not only the Physical Vapor Deposition (PVD) but also Chemical Vapor Deposition (CVD) of phase change materials have been investigated [5,6] to increase the bit density of PCM. In the long run, we believe that CVD SL will become a key factor for continually increasing the density of PCM. This paper presents a new CVD fabrication process for SL PCM. Set and reset characteristics with good cycling endurance of 1E+5 times is also presented.

2. GeTe/Sb$_2$Te$_3$ CVD on 300-mm Si wafer
The main concerns when fabricating CVD GeTe / Sb$_2$Te$_3$ SL are the thickness and roughness of it (Table 1). This work improved them by using a method that combines the synchronized and unsynchronized precursor supplies (Fig. 2). This method was developed to fabricate GeTe and Sb$_2$Te$_3$ using an identical deposition temperature. The SL films were deposited on Φ300-mm Si wafers (Table 2). A bubbling method was used for the supply system of the precursor, and nitrogen was used as the purge and carrier gases.

Thin Sb$_2$Te$_3$, GeTe, and GeSbTe CVD films were successfully fabricated using precursor molecules with planar structures (Fig. 3). The composition of Sb$_2$Te$_3$ was depended on the Te precursor flow, and Sb$_2$Te$_3$ was created using a Te precursor flow rate of 30 cc (Fig. 4). The contaminants in the film were below the detection limit of XPS (Fig. 6). We also successfully created GeTe using a 3.6-cc Ge precursor flow rate (Fig. 5). These films were deposited at a temperature of 250 deg. (Figs. 7 and 8).

Table 3 lists the XRD and TEM measurement results from the GeSbTe and GeTe/Sb$_2$Te$_3$ CVD films. The XRD data from the GeTe/Sb$_2$Te$_3$ CVD film had peak shifts in the hexagonal Sb$_2$Te$_3$. These peaks were different from those of GeSbTe, and were caused by the c-axis orientation of GeTe on Sb$_2$Te$_3$. Therefore, they indicate the formation of SL [4]. The TEM data showed atomic interference fringes, and those of the SL looked narrower than those of GeSbTe.

3. Non-volatile Operation of CVD GeTe/Sb$_2$Te$_3$
We fabricated 2-terminal device implementing CVD GeTe/Sb$_2$Te$_3$ SL films. There were eight CVD GeTe/Sb$_2$Te$_3$ SL film periods, and the total thickness was 56 nm. The contact size was 100 nm in diameter. Figures 9 and 10 show the reset and set programming characteristics, respectively. The pulse timings (trailing edge/width/falling edge) were 50/10/5 nsec for the reset operation and 100/700/1000 nsec for the set operation. A non-volatile recording between R_{set} \approx 2 MΩ and $R_{reset} < 30$ kΩ was successfully confirmed at a resistance ratio of more than 10. Repeated operations at a 1E+5 cycling endurance were demonstrated (Fig. 10).

4. Further Improvement
We believe further improvement, such as longer endurance and lower set and reset voltages, would be possible by optimizing the thickness of the GeTe/Sb$_2$Te$_3$ SL films.

5. Conclusion
CVD GeTe/Sb$_2$Te$_3$ Super-lattice phase change memory was created for the first time. The results from our XRD and TEM measurements verified that the synchronized and unsynchronized supply of precursors made it possible to deposit a GeTe/Sb$_2$Te$_3$ super-lattice. We demonstrated a non-volatile SL CVD operation with a 1E+5 cycling endurance.

Acknowledgements
This work was performed as an “Ultra-Low Voltage Device Project” funded and supported by METI and NEDO. A part of the device processing was operated by the SCR operation office and IBEC, AIST, Japan. We would like to thank the people at Hitachi Kokusai Electrics Toyama Works for their fruitful discussions.

References
Table 1 Main concern for GeTe/Sb$_2$Te$_3$ CVD.

<table>
<thead>
<tr>
<th>concern</th>
<th>thickness</th>
<th>roughness</th>
<th>ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>supply of precursors</td>
<td>Synchronized</td>
<td>Unsynchronized</td>
<td>Synchronized + Unsynchronized</td>
</tr>
</tbody>
</table>

Table 2 CVD process conditions.

<table>
<thead>
<tr>
<th>deposition temperature</th>
<th>Max. 400 deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>wafer size</td>
<td>300 mm</td>
</tr>
<tr>
<td>supply system</td>
<td>bubbling</td>
</tr>
<tr>
<td>purge gas</td>
<td>N$_2$</td>
</tr>
<tr>
<td>carrier gas</td>
<td>N$_2$</td>
</tr>
</tbody>
</table>

Table 3 XRD and TEM measurement results for GeSbTe and GeTe/Sb$_2$Te$_3$ CVD films.

<table>
<thead>
<tr>
<th>crystal</th>
<th>XRD</th>
<th>TEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeSbTe</td>
<td>hcp+fcc</td>
<td>![TEM image of GeSbTe]</td>
</tr>
<tr>
<td>GeTe</td>
<td>![XRD image of GeTe]</td>
<td></td>
</tr>
<tr>
<td>GeTe/Sb$_2$Te$_3$</td>
<td>hcp</td>
<td>![TEM image of GeTe/Sb$_2$Te$_3$]</td>
</tr>
</tbody>
</table>

Fig. 1 GeTe/Sb$_2$Te$_3$ Super-Lattice films[1]

- GeTe and Sb$_2$Te$_3$ stacking in c-axis direction
- Crystal to crystal change (short-range Ge motion) => reduction of operational power

Fig. 2 Supply sequence of precursors. Synchronized and unsynchronized sequence were combined.

Sb precursor
Tris(dimethylamino)antimony
Me$_2$N$_3$Sb NMe$_2$
(tetrt-Bu) - Te - (tetrt-Bu)

Te precursor
Di-tert-butylltellurium
Me$_2$N$_3$Sb NMe$_2$
(tetrt-Bu) - Te - (tetrt-Bu)

Fig. 3 Sb and Te precursor molecules with planar structures.

Fig. 4 Sb-Te CVD. The Sb$_2$Te$_3$ was successfully obtained using 30 cc of Te precursor.

Fig. 5 Ge-Te CVD. The GeTe was successfully obtained using 3.6 cc of Ge precursor.

Fig. 7 Vapor pressure of Ge, Sb and Te. Region of interest was near 1000 Pa and 250deg.

Fig. 8 CVD deposition rates. It became possible to deposit Sb$_2$Te$_3$, GeTe, and GeSbTe at an identical temperature of 250 deg.

Fig. 9 Set operation of CVD GeTe/Sb$_2$Te$_3$ SL device. We used a set pulse with a trailing edge/widths/falling edge = 100/700/1000 ns.

Fig. 10 Reset operation of CVD GeTe/Sb$_2$Te$_3$ SL device. We used a reset pulse with a trailing edge/widths/falling edge = 5/100/5 ns.

Fig. 11 Reset/set cycle operation of CVD GeTe/Sb$_2$Te$_3$ SL device.