Formation and electronic properties of X- and T- shaped InSb nanowires and nanowire networks

Diana Car1,*, Marcel A. Verheijen1,2, Ilse van Weperen3, Sergey M. Frolov3,4, Leo P. Kouwenhoven3, Erik P.A.M. Bakkers1,3 and Sébastien R. Plissard1,3

1 Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
2 Philips Innovation Services Eindhoven, High Tech Campus 11, 5656AE Eindhoven, the Netherlands
3 Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, the Netherlands
4 Department of Physics and Astronomy, University of Pittsburgh, 3943 O'Hara Street, 15260 Pittsburgh PA, USA

Abstract.

Signatures of Majorana fermions have recently been reported in an InSb single - nanowire device.[1,2] In order to prove the non-abelian properties of Majorana fermions, it is necessary to perform logical operations by interchanging the positions of the two Majoranas.[3] This is not possible in a single InSb nanowire; Majorana fermion is its own antiparticle so when two Majoranas meet they annihilate. Therefore, more complex structures are needed.

We have investigated the formation of X- and T- shaped InSb nanowires. Depending on the meeting angle of the two wires, these structures can be single crystalline. We are now developing a method to increase the yield of single-crystalline crosses. With this method we can also make nanowire networks. First electrical measurements done on these nanostructures will be discussed. Hall effect measurements at low temperature prove the high quality of these new structures.

Fig. 1 A 30°-tilted-view SEM image of a double-junction InSb nanowire structure.

References
