Speed Enhancement at $V_{dd} = 0.4$ V and Random τ_{pd} Variability Reduction of Silicon on Thin Buried Oxide (SOTB)

H. Makiyama 1, Y. Yamamoto 1, H. Shinohara 1, T. Iwamatsu 1, H. Oda 1, N. Sugii 1, K. Ishibashi 2, and Y. Yamaguchi 1

1Low-power Electronics Association & Project (LEAP) 2The University of Electro-Communications

West 7, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
E-mail: hideki.makiyama.wx@renesas.com, Tel: +81-29-879-8760

Abstract - Ring oscillator characteristics of silicon on thin buried oxide (SOTB) were investigated at V_{dd} down to 0.4 V. It was demonstrated that both the propagation delay (τ_{pd}) and energy-delay (ED) product of SOTB are smaller than those of bulk devices due to its steeper subthreshold swing. It was found that the τ_{pd} variability of SOTB is dominated by global variability because of small local variability due to the intrinsic channel. The τ_{pd} variability is mainly determined by the global drive-current variability and thus can be easily reduced by die-to-die substrate bias voltage control.

I. INTRODUCTION

The silicon on thin buried oxide (SOTB) [1] is a strong candidate for ultralow-voltage operation of CMOS due to small threshold-voltage (V_{th}) variability and back-bias control [2]. Advantages of SOTB device characteristics for supply voltage (V_{dd}) reduction have been reported [3-5]. To achieve the ultralow-power LSI, demonstration of stable circuit operation at low V_{dd} is necessary. However, increasing delay variability at low V_{dd} is an important challenge. In this paper, propagation delay variability of SOTB at V_{dd} down to 0.4 V was investigated through ring oscillator (RO) measurements.

II. FABRICATION AND MEASUREMENT

RO circuits were fabricated by 65 nm SOTB process [5,6] on silicon on insulator (SOI) substrate of 10-nm thick buried oxide (BOX) (Fig. 1). Bulk ROs of the same V_{th} as SOTB at $V_{dd} = 0.4$ V were fabricated as controls. The propagation delay time (τ_{pd}) was evaluated through measurements of many chips in a whole wafer. The dc characteristics of specific transistors were also measured to analyze delay characteristics.

III. RESULTS AND DISCUSSION

A. Propagation delay and ED product

Figure 2 shows V_{th} shift with varying V_{dd}. V_{th} shift of SOTB is obviously smaller than that of bulk due to small drain induced barrier lowering (DIBL). The τ_{pd} of SOTB is smaller than that of bulk at $V_{dd} = 0.4$ V, at the same V_{th} (Fig. 3). Furthermore, SOTB has smaller τ_{pd} than bulk in a whole range of V_{dd} in spite of higher V_{th} than bulk at $V_{dd} > 0.4$ V. It is because SOTB has higher effective drive current (I_{eff}) [7] than bulk at the same I_{eff} due to steeper sub threshold swing characteristic (Fig. 4). This feature of SOTB enhances operation speed especially at low V_{dd}. As a result, energy-delay (ED) products [8] of SOTB is superior to those of bulk (Fig. 5). Note that V_{min} of the ED product for SOTB decreases down to 0.5 V with decreasing the V_{th} down to 0.15 V (not shown).

Small τ_{pd} and ED of SOTB is demonstrated for a wide range of V_{dd}.

B. Delay variability

ROs with various numbers of stages were measured to examine τ_{pd} variability ($\sigma_{\tau_{pd}}$) at $V_{dd} = 0.4$ V. The $\sigma_{\tau_{pd}}$ should be proportional to $1/\sqrt{N}$ (N: number of stages) if it is caused by local variability [9,10]. Figure 6 shows $1/\sqrt{N}$ dependence of $\sigma_{\tau_{pd}}$. The $\sigma_{\tau_{pd}}$ of bulk increases proportional to $1/\sqrt{N}$. By contrast, the $\sigma_{\tau_{pd}}$ of SOTB is almost constant. This result indicates the $\sigma_{\tau_{pd}}$ of SOTB is not affected by the local variability.

To investigate the origin of $\sigma_{\tau_{pd}}$ of 101- and 25-stage ROs in a whole wafer were plotted (Fig. 7). There is a strong correlation between them only for SOTB. This means that the $\sigma_{\tau_{pd}}$ of SOTB shows the systematic behavior. Then, $\sigma_{\tau_{pd}}$ is calculated (Fig. 8) by taking two factors, global and local terms, $\sigma_{\tau_{pd,global}}$ and $\sigma_{\tau_{pd,local}}$, respectively, into account. The $\sigma_{\tau_{pd,global}}$ is assumed to be constant and the $\sigma_{\tau_{pd,local}}$ is estimated from the experimental local V_{th} variability data [4]. The $\sigma_{\tau_{pd,local}}$ of bulk is proportional to $1/\sqrt{N}$ due to large $\sigma_{\tau_{pd,local}}$. On the other hand, in SOTB, $\sigma_{\tau_{pd,local}}$ shows weak dependence with $1/\sqrt{N}$. The calculation clearly reproduced the measurement results. We thus concluded that the $\sigma_{\tau_{pd}}$ of SOTB is dominated by the $\sigma_{\tau_{pd,global}}$ because of the small $\sigma_{\tau_{pd,local}}$ with the intrinsic channel.

If $\sigma_{\tau_{pd}}$ is caused by the systematic variability of V_{th}, it can be easily controlled by back biasing [1,5]. The relation between τ_{pd} and $1/I_{eff}$ is shown in Fig. 9. The τ_{pd} of SOTB strongly correlate with $1/I_{eff}$. This means the $\sigma_{\tau_{pd}}$ of SOTB is mainly caused by the global I_{eff} variability. On the other hand, in bulk, there is a weak correlation between τ_{pd} and $1/I_{eff}$ suggesting that the $\sigma_{\tau_{pd}}$ is mainly determined by the local variability of V_{th} caused by RDF. In SOTB, we can easily reduce $\sigma_{\tau_{pd}}$ by correcting V_{th} by changing die-to-die substrate voltage.

IV. CONCLUSION

The propagation delay (τ_{pd}) and τ_{pd} variability ($\sigma_{\tau_{pd}}$) of SOTB ring oscillator were investigated. SOTB has smaller τ_{pd} and ED product than those of bulk under a wide range of supply voltage down to 0.4 V. It is revealed that $\sigma_{\tau_{pd}}$ of SOTB is dominated by die-to-die global variability due to its small local variability. Therefore, the delay variability of SOTB can be significantly reduced by back-bias control. This feature is a significant advantage of SOTB for the ultralow-voltage operation of LSI.
operation of CMOS.

ACKNOWLEDGMENT

This work was performed as “Ultra-Low Voltage Device Project” funded and supported by METI and NEDO, Japan.

REFERENCES