Speed Enhancement at $V_{dd} = 0.4$ V and Randam τ_{pd} Variability Reduction of Silicon on Thin Buried Oxide (SOTB)

H. Makiyama¹, Y. Yamamoto¹, H. Shinohara¹, T. Iwamatsu¹, H. Oda¹,

N. Sugii¹, K. Ishibashi², and Y. Yamaguchi¹

¹Low-power Electronics Association & Project (LEAP) ²The University of Electro-Communications

West 7, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan

E-mail: hideki.makiyama.wx@renesas.com, Tel: +81-29-879-8760

Abstract - Ring oscillator characteristics of silicon on thin buried oxide (SOTB) were investigated at V_{dd} down to 0.4 V. It was demonstrated that both the propagation delay (τ_{pd}) and energy-delay (ED) product of SOTB are smaller than those of bulk devices due to its steeper subthreshold swing. It was found that the τ_{pd} variability of SOTB is dominated by global variability because of small local variability due to the intrinsic channel. The τ_{pd} variability is mainly determined by the global drive-current variability and thus can be easily reduced by die-to-die substrate bias voltage control.

I. INTRODUCTION

The silicon on thin buried oxide (SOTB) [1] is a strong candidate for ultralow-voltage operation of CMOS due to small threshold-voltage ($V_{\rm th}$) variability and back-bias control [2]. Advantages of SOTB device characteristics for supply voltage ($V_{\rm dd}$) reduction have been reported [3-5]. To achieve the ultralow-power LSI, demonstration of stable circuit operation at low $V_{\rm dd}$ is necessary. However, increasing delay variability at low $V_{\rm dd}$ is an important challenge. In this paper, propagation delay variability of SOTB at $V_{\rm dd}$ down to 0.4 V was investigated through ring oscillator (RO) measurements.

II. FABRICATION AND MEASUREMENT

RO circuits were fabricated by 65 nm SOTB process [5,6] on silicon on insulator (SOI) substrate of 10-nm thick buried oxide (BOX) (Fig. 1). Bulk ROs of the same $V_{\rm th}$ as SOTB at $V_{\rm dd} = 0.4$ V were fabricated as controls. The propagation delay time ($\tau_{\rm pd}$) was evaluated through measurements of many chips in a whole wafer. The dc characteristics of specific transistors were also measured to analyze delay characteristics.

III. RESULTS AND DISCUSSION A. Propagation delay and ED product

Figure 2 shows V_{th} shift with varying V_{dd} . V_{th} shift of SOTB is obviously smaller than that of bulk due to small drain induced barrier lowering (*DIBL*). The τ_{pd} of SOTB is smaller than that of bulk at $V_{dd} = 0.4$ V, at the same V_{th} (Fig. 3). Furthermore, SOTB has smaller τ_{pd} than bulk in a whole range of V_{dd} in spite of higher V_{th} than bulk at $V_{dd} > 0.4$ V. It is because SOTB has higher effective drive current (I_{eff}) [7] than bulk at the same I_{off} due to steeper sub threshold swing characteristic (Fig. 4). This feature of SOTB enhances operation speed especially at low V_{dd} . As a result, energy-delay (ED) products [8] of SOTB is superior to those of bulk (Fig. 5). Note that V_{min} of the ED product for SOTB decreases down to 0.5 V with decreasing the V_{th} down to 0.15 V (not shown). Small τ_{pd} and ED of SOTB is demonstrated for a wide range of V_{dd} .

B. Delay variability

ROs with various numbers of stages were measured to examine τ_{pd} variability ($\sigma_{\tau pd}$) at $V_{dd} = 0.4$ V. The $\sigma_{\tau pd}$ should be proportional to $1/\sqrt{N}$ (N: number of stages) if it is caused by local variability [9,10]. Figure 6 shows $1/\sqrt{N}$ dependence of $\sigma_{\tau pd}$. The $\sigma_{\tau pd}$ of bulk increases proportional to $1/\sqrt{N}$. By contrast, the $\sigma_{\tau pd}$ of SOTB is almost constant. This result indicates the $\sigma_{\tau pd}$ of SOTB is not affected by the local variability.

To investigate the origin of $\sigma_{\tau pd}$, τ_{pd} s of 101- and 25-stage ROs in a whole wafer were plotted (Fig. 7). There is a strong correlation between them only for SOTB. This means that the $\sigma_{\tau pd}$ of SOTB shows the systematic behavior. Then, $\sigma_{\tau pd}$ is calculated (Fig. 8) by taking two factors, global and local terms, $\sigma_{\tau pd,global}$ and $\sigma_{\tau pd,local}$, respectively, into account. The $\sigma_{\tau pd,global}$ was assumed to be constant and the $\sigma_{\tau pd,local}$ is estimated from the experimental local V_{th} variability data [4]. The $\sigma_{\tau pd}$ of bulk is proportional to $1/\sqrt{N}$ due to large $\sigma_{\tau pd,local}$. On the other hand, in SOTB, $\sigma_{\tau pd}$ shows weak dependence with $1/\sqrt{N}$. The calculation clearly reproduced the measurement results. We thus concluded that the $\sigma_{\tau pd}$ of SOTB is dominated by the $\sigma_{\tau pd,global}$ because of the small $\sigma_{\tau pd,local}$ with the intrinsic channel.

If $\sigma_{\tau pd}$ is caused by the systematic variability of V_{th} , it can be easily controlled by back biasing [1,5]. The relation between τ_{pd} and $1/I_{eff}$ is shown in Fig. 9. The τ_{pd} of SOTB strongly correlate with $1/I_{eff}$. This means the $\sigma_{\tau pd}$ of SOTB is mainly caused by the global I_{eff} variability. On the other hand, in bulk, there is a weak correlation between τ_{pd} and $1/I_{eff}$ suggesting that the $\sigma_{\tau pd}$ is mainly determined by the local variability of V_{th} caused by RDF. In SOTB, we can easily reduce $\sigma_{\tau pd}$ by correcting V_{th} by changing die-to-die substrate voltage.

IV. CONCLUSION

The propagation delay (τ_{pd}) and τ_{pd} variability $(\sigma_{\tau pd})$ of SOTB ring oscillator were investigated. SOTB has smaller τ_{pd} and ED product than those of bulk under a wide range of supply voltage down to 0.4 V. It is revealed that $\sigma_{\tau pd}$ of SOTB is dominated by die-to-die global variability due to its small local variability. Therefore, the delay variability of SOTB can be significantly reduced by back-bias control. This feature is a significant advantage of SOTB for the ultralow-voltage

operation of CMOS.

ACKNOWLEDGMENT

This work was performed as "Ultra-Low Voltage Device Project" funded and supported by METI and NEDO, Japan. **REFERENCES**

[1] R. Tsuchiya et al., IEDM Tech. Dig., p. 631 (2004).

[2] N. Sugii et al., *IEEE T-ED*, vol. 57, No. 4, p. 835 (2010).

[3] N. Sugii et al., *IEEE SOI conference*, p. 91 (2011).

Fig. 1 Fabrication process and TEM image of SOTB transistor.

Fig. 4 I_{eff} - I_{off} characteristics for SOTB and bulk. SOTB has higher I_{eff} than bulk at the same I_{off} .

Fig. 7 Correlation between delays of 101- and 25-stage ROs. The correlation coefficients are R = 0.92 and 0.32 for SOTB (\blacksquare) and bulk (Δ), respectively.

Fig. 2 Supply voltage (V_{dd}) dependence of threshold voltage (V_{th}) .

Fig. 5 Supply voltage (V_{dd}) dependence of energy-delay product of 101 stage RO. Energy is defined by $I_{dd}V_{dd}$ / frequency. I_{dd} is active current of RO.

Fig. 8 Simulated $\sigma_{\tau pd}$ - $1/\sqrt{N}$ relationship. $\sigma_{\tau pd,local}$ and $\sigma_{\tau pd,global}$ denote local and global variability, respectively. $\sigma_{\tau pd}$ is defined by root sum square of $\sigma_{\tau pd,local}$ and $\sigma_{\tau pd,global}$.

- [4] T. Mizutani et al., Silicon Nanoelectronics Workshop (2012).
- [5] Y. Yamamoto et al., VLSI Technology, p. 109, (2012).
- [6] Y. Morita et al., VLSI Technology, p.166, (2008).
- [7] M. H. Na et al., IEDM Tech. Dig., p. 121 (2002).
- [8] M. Horowitz et al., IEEE symp. on Low Power Elec., p.8 (1994).
- [9] M. J. M. Pelgrom et al, JSSC, vol. 24, No.5, p. 1433 (1989).
- [10] H. Onodera et al., ASICON '09, p. 658 (2009).

Fig. 3 Supply voltage (V_{dd}) dependence of propagation delay time.

Fig. 6 Measured $1/\sqrt{N}$ dependence of standard deviation of propagation delay time (σ_{rpd}).

Fig. 9 Relation between normalized τ_{pd} (τ_{pd} /median) and 1/ $I_{eff,n}$ +1/ $I_{eff,p}$. $I_{eff,n}$ and $I_{eff,p}$ denote effective drive currents of N and PMOS, respectively.