In0.53Ga0.47As Diodes for Band-to-Band Tunneling Calibration and n- and p-LineTFET performance prediction

Q. Smets¹, A.S. Verhulst, R. Rooyackers, C. Merckling, D. Lin, E. Simoen, A. Alian, M. Cantoro, A. Pourghaderi, K-H. Kao¹, D. Verreck¹, K. De Meyer¹, N. Collaert, V-Y. Thean, M.M. Heyns¹

Imec, Kapeldreef 75, 3001 Heverlee, Belgium; ¹also KU Leuven, Belgium

0032/16283513 quentin.smets@imec.be

Abstract

Promising predictions are made for III-V TFET, but there is still a large gap between simulation and experiment [1]. Calibration efforts are ongoing [2,3], but the electric field at the tunnel junction is not always well known. In this paper, the band-to-band tunneling model for InAsGaAs was calibrated with simple p-i-n diodes which have a uniform electric field in the i-region. Good agreement was obtained between simulations and experimental results. The calibrated models were applied to predict InAsGaAs n- and p-lineTFET performance.

1. **Introduction**

The TFET is a promising candidate to replace the MOSFET for future low power logic nodes. Especially III-V materials are of great interest, since they feature much higher band-to-band tunneling (BTBT) currents than their group IV counterparts due to the direct band gap and smaller effective tunnel mass [1]. The performance of different TFET configurations and materials can be predicted with semi-classical or quantum-mechanical simulations, but an accurate calibration of the models used is still missing.

2. **Fabrication and characterization**

A new process flow was developed for small-junction-area diode fabrication [3-5], featuring metal-free wet etching of the mesa and self-aligned p- and n-type contact deposition. InAsGaAs p-i-n stacks were grown by MBE on 2 inch InP(001) substrates (p-doped at 5\times10¹⁷cm⁻³) from AXT [6]. Stacks with different intrinsic thicknesses \(T_i \) were grown (9nm, 18nm, 46nm), and the p- and n-region doping levels were 2×10¹⁹cm⁻³ and 1.5×10¹⁹cm⁻³, resp. After patterning a SiO₂ hard mask (fig. 1a), the diodes were wet etched using a diluted citric acid-peroxide solution. A metal contact was then deposited self-aligned on the p-InAsGaAs, followed by Benzocyclobutene (BCB) spinning and curing (fig. 1b). The BCB was recessed and the exposed metal and SiO₂ hard mask were removed. A metal contact was then deposited on n-InAsGaAs and patterned. Finally the exposed BCB was removed by dry etching to allow connecting to the metal contact of the p-InAsGaAs layer (fig. 1c).

The n-type doping level 1.5×10¹⁹cm⁻³ was confirmed with Hall measurements. The \(T_i = 18 \)nm was verified with C-V measurements (fig. 2). Dominating BTBT current in reverse bias and small forward bias was validated by weak temperature dependence, supported by negative differential resistance in forward bias at room temperature (fig. 3). The BTBT current scaled with area (fig. 4), making calibration possible. Diodes with \(T_i = 46 \)nm show SRH current at onset allowing generation lifetime extraction (fig. 5).

3. **BTBT calibration and TFET prediction**

P-i-n diodes with abrupt doping profiles were simulated (fig. 6) [7]. The models include light hole, heavy hole and split-off bands, direct and indirect (L,X) conduction band valleys with non-parabolicity [7-9], Jain-Roulston doping dependent band gap narrowing (BGN) [10-11] and dynamic nonlocal path BTBT with direct gap parameters \(A=1.57×10^{20} \)cm⁻³ and \(B=5.5×10^{6} \) V cm⁻¹ [12]. A good match was obtained between experiments and simulations (fig. 7).

Pocketed lineTFETs were simulated with these calibrated BTBT models (fig. 8) [7]. BGN was not included and therefore the predicted current is an underestimation.

The n-TFET has a sub-60mV/dec swing with \(I_{oa}=0.2\mu A/\mu m \) (fig. 8a) [13], while the p-TFET has a super-60mV/dec onset due to the low electron density-of-states mass of InAsGaAs (fig. 8b) [14]. The pocketed InAsGaAs n-lineTFET looks promising with \(I_{oa}=290\mu A/\mu m \) in a supply voltage window \(V_{dd}=0.5V \).

4. **Conclusion**

InAsGaAs p-i-n tunnel diodes with three different intrinsic region thicknesses were fabricated. The tunnel current was measured and compared to semi-classical simulations using SentaurusDevice. Good agreement was obtained from \(E=0.21MV/cm \) to 1.2MV/cm, validating the BTBT model. Predictions based on the calibrated BTBT model for the pocketed InAsGaAs n-lineTFET showed a promising \(I_{oa}=290\mu A/\mu m \) for \(V_{dd}=0.5V \), with \(I_{oa}=0.2\mu A/\mu m \).

Acknowledgements

Q. Smets and D. Verreck gratefully acknowledge the support of a Ph.D. stipend from IWT-Vlaanderen. This work was supported by imec’s Industrial Affiliation Program.

References

Fig 1: Fabrication of the p-i-n diodes.

Fig 2: C-V characteristics on diodes with $T_i = 18\text{nm}$. In the low-current and frequency-independent C region (shaded green), the depletion width is $\sim 20\text{nm}$.

Fig 3: Temperature dependence of diode current ($2.7\mu\text{m}^2$ diode, $T_i = 9\text{nm}$) identifies BTBT and diffusion regimes.

Fig 4: Areal current density in diodes of different size. Inset: $I_{60} = 0.1\text{V}$. BTBT current scales with diode area, diffusion current with diode perimeter.

Fig 5: Temperature dependence of diode current ($2.7\mu\text{m}^2$ diode, $T_i = 46\text{nm}$) identifies SRH current at low reverse bias (activation energy $E_A = 0.38\text{eV}$, half In$_{0.55}$Ga$_{0.47}$As band gap). SRH calibration yields $\tau_{SRH} = 2.5\text{e-14s}$.

Fig 6: Band structure at $V_{np} = 0.5\text{V}$ [7], showing BTBT generation ($G_{e,h,BTBT}$) only in the uniform electric field region.

Fig 7: BTBT simulations (full lines) [7] and experimental BTBT current (circles) show a good match. The simulated electric field in the intrinsic region at $V_{np} = 0.5\text{V}$ is indicated.

Fig 8: Pocketed a) n- and b) p-line TFET predictions, with a) $I_{60} = 0.2\mu\text{A}/\mu\text{m}$ and b) SS $= 70\text{mV/dec}$. $V_{ds} = 0.6\text{V}$, $L_g = 30\text{nm}$, $L_{ch} = 50\text{nm}$, $L_{p} = 3.4\text{nm}$, $L_{pock} = 4.8\text{nm}$, $N_s = 2\times 10^{19} \text{cm}^{-2}$, $V_{dd} = 0.5\text{V}$.
