Systematic investigation of precessional magnetization damping for Ta/CoFeB/MgO thin films with perpendicular magnetic anisotropy

Satoshi Iihama1, Shigemi Mizukami2, Qinli Ma2, Takahide Kubota2, Hiroshi Naganuma1, Mikihiko Oogane1, Yasuo Ando1, and Terunobu Miyazaki2

1 Department of Applied Physics, Graduate School of Engineering, Tohoku University
Aoba 6-6-05, Sendai 980-8579, Japan
Phone: +81-22-795-7949 E-mail: iihama@mlab.apph.tohoku.ac.jp
2 WPI Advanced Institute for Materials Research, Tohoku University
Katahira 2-1-1, Sendai 980-8577, Japan

Abstract

Magnetization precession for CoFeB thin films with perpendicular magnetic anisotropy was detected using all-optical pump-probe method. Gilbert damping constant (ζ) was evaluated from life-time of magnetization precession. ζ and/or effective ζ values were systematically investigated for Ta/CoFeB/MgO samples with different stacking structure, annealing temperature, and CoFeB thickness.

1. Introduction

CoFeB/MgO/CoFeB magnetic tunnel junction (MTJ) has much attractive property for Spin-Transfer-Torque Magnetoresistive Random Access Memory (STT-MRAM). CoFeB/MgO bilayer exhibits perpendicular magnetic anisotropy (PMA), which is caused by interfacial perpendicular magnetic anisotropy. CoFeB/MgO/CoFeB MTJ also shows a large tunnel magnetoresistance ratio over 120%$^{[1]}$. On the other hand, Gilbert damping constant (ζ) is an important factor for reducing power consumption. PMA materials such as CoPt, FePt have a tendency to show large ζ. ζ value for CoFeB thin films with PMA shows 0.027$^{[1]}$. This value is relatively smaller than those of other PMA materials. However, there are few reports about ζ for PMA CoFeB. We report that ζ value was evaluated using all-optical pump-probe method and systematically investigated with different stacking structure, annealing temperature, and CoFeB thickness.

2. Experimental Methods

Samples were fabricated using ultrahigh vacuum magnetron sputtering method. Stacking structures were A: Si/SiO$_2$ substrate/Ta (5)/MgO (2.2)/Co$_{20}$Fe$_{60}$B$_{20}$ (1.2)/Ta (1), B: Si/SiO$_2$ substrate/Ta (5)/Co$_{20}$Fe$_{60}$B$_{20}$ (t$_{CoFeB}$)/MgO (2)/Al (2) (thickness in nm). Samples were annealed with different annealing temperature(T$_a$), 250, 300, and 350°C. For comparison, Si/SiO$_2$ substrate/Ta (5)/Co$_{20}$Fe$_{60}$B$_{20}$ (t$_{CoFeB}$)/Ta (5) was also fabricated. Magnetic property of the films was measured by vibrating sample magnetometer and superconducting quantum interface device. Time-resolve magneto-optical Kerr effect (TRMOKE) was performed to detect magnetization dynamics using all-optical pump-probe method. Pulse width, frequency, and laser wavelength are ~100 fs, 1 kHz, 800 nm, respectively. Modulation frequency of the pump beam was 360 Hz. Maximum magnetic field is 10 kOe using an electromagnet in the optical system.

3. Experimental Results

Figure 1 shows the typical TRMOKE signals with different field angle (\(\theta_p\)) which is defined as angle between film normal and applied field direction. Ultrafast demagnetization near zero delay time is caused by pulse heating induced by the incident pump beam. Reduction of demagnetizing field and PMA field changes the effective field direction and magnetization precession can be excited. TRMOKE signals can be fitted as following function

$$A + B \exp(-vt) + A\text{mp} \cdot \exp\left(-\frac{t}{\tau}\sin(2\pi ft + \phi_0)\right)$$

where, A is offset value, B and ν are magnitude of demagnetization and recovery rate of demagnetization, respectively. Amp. f, τ, ϕ_0 are precession amplitude, frequency, life-time, and initial phase, respectively. Figure 2(a) and (b) show field angle dependence (\(\theta_p\)) of precession fre-

Fig. 1 Typical TRMOKE signals with different field angle(\(\theta_p\); between film normal and applied field direction) at fixed applied field about 10 kOe for Ta/CoFeB(1.2)/MgO PMA films.
The slope distribution. Therefore, which can apparently decrease damp- ing. Thin solid lines are data calculated using LLG equation.

\[\alpha_{\text{eff}} = \frac{1}{2\pi f_0} \]

\(\alpha_{\text{eff}} \) are plotted as a function of \(\theta_0 \) for the case of thick CoFeB films which show in-plane anisotropy as shown in Fig. 3(a). Since observed \(\alpha_{\text{eff}} \) was isotropic, these values for in-plane anisotropy CoFeB films are close to \(\alpha \). Figure 3(b) shows the case of thin CoFeB films which shows PMA. Anisotropic \(\alpha_{\text{eff}} \) was observed. This behavior indicates that these values for PMA CoFeB films include effect of anisotropy distribution. Therefore, minimum of \(\alpha_{\text{eff}} (\alpha_{\text{eff}}^{\min}) \) was evaluated as an upper bound of \(\alpha \).

Figure 4 shows \(\alpha \) or \(\alpha_{\text{eff}}^{\min} \) plotted as a function of inverse of CoFeB thickness (1/1/CoFeB) for Ta/CoFeB/MgO and Ta/CoFeB/Ta films. \(\alpha \) which was increased linearly with 1/1/CoFeB from bulk value was observed for in-plane anisotropy CoFeB films. In the case that thickness of ferromagnetic layer is small, \(\alpha \) is enhanced by spin-pumping effect. It was also observed that the slope in Ta/CoFeB/Ta films was larger than that in Ta/CoFeB/MgO films. This results indicate that Ta interface mainly increased \(\alpha \), which is scaled by spin mixing conductance. At 1/1/CoFeB > 0.8 nm\(^{-1}\) in Fig. 4, large enhancement of \(\alpha_{\text{eff}}^{\min} \) for Ta/CoFeB/MgO films was observed. Since effect of extrinsic relaxation mechanism such as anisotropy dispersion and two-magnon scattering may increase with decreasing thickness. It is considered that there is a large deviation between \(\alpha \) and \(\alpha_{\text{eff}}^{\min} \). High applied field measurement is necessary to evaluate \(\alpha \), because extrinsic relaxation is suppressed by high external field.

Fig. 2 (a) Precession frequency (\(f \)) obtained from fitting as a function of field angle (\(\theta_0 \)). (b) Inverse of life-time (1/\(\tau \)) obtained from fitting as a function of \(\theta_0 \). Thin solid lines are data calculated using LLG equation.

Fig. 3 Field angle (\(\theta_0 \)) dependence of \(\alpha_{\text{eff}} \) for (a) in-plane anisotropy Ta/CoFeB/MgO films and (b) PMA Ta/CoFeB/MgO films with \(T_s = 250^\circ \text{C} \).

4. Conclusions

Magnetization precession and damping for Ta/CoFeB/MgO thin films were systematically investigated. It was found that the increase of \(\alpha \) for Ta/CoFeB/MgO films is due to Ta interface. At thin CoFeB thickness region, which shows PMA, large enhancement of \(\alpha_{\text{eff}}^{\min} \) was observed. This enhancement may be due to extrinsic relaxation, because \(\alpha_{\text{eff}} \) shows anisotropic for PMA CoFeB films.

Fig. 4 \(\alpha \) or \(\alpha_{\text{eff}}^{\min} \) are plotted as a function of inverse of CoFeB thickness for Ta/CoFeB/Ta and Ta/CoFeB/MgO films. In the case of Ta/CoFeB/MgO samples, films show PMA at the region of 1/1/CoFeB > 0.8 nm

Acknowledgements

This work was supported in part through a Grant for Industrial Technology Research from NEDO, a Grant-in-Aid for Scientific Research from the JSPS, and the Asahi glass foundation.

References