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Abstract 

We present 1.3 m InAs/GaAs quantum dot lasers 

on Si substrates operating at 100 ºC. Our lasers are fab-

ricated through epitaxial growth on GaAs substrates of 

the InAs/GaAs quantum dot laser double heterostruc-

ture and subsequent GaAs/Si wafer bonding and layer 

transfer onto Si substrates. This result verifies the suit-

ability of III-V quantum dot lasers as a light source in 

Si photonic integrated circuits. 

 

1. Introduction 

Silicon photonic integrated circuits are a promising 

component for the realization of ultrahigh-speed, large 

volume computation and telecommunication. III-V semi-

conductor compound lasers integrated onto Si platform are 

thought to be an excellent solution for the absence of a 

practical light source made out of silicon. There has been 

however no laser on silicon operating at the telecommuni-

cation band at or above 70 ºC, a standard requirement for 

such applications. Quantum dot (QD) lasers are particularly 

suitable for this application because of their low threshold 

current and high thermal stability relative to the conven-

tional quantum-well lasers [1]. In this study, we have fab-

ricated 1.3 m InAs/GaAs QD lasers on Si substrates by 

wafer bonding and layer transfer. Our lasers for both fabri-

cated with direct bonding and metal-mediated bonding op-

erate at 100 ºC. 

 

2. Experimental 

The InAs/GaAs lasers on Si substrates used in this 

study were fabricated in similar ways as those shown in Ref. 

2 for the direct-bonded sample and Ref. 3 for the met-

al-mediated-bonded sample, respectively, but importantly 

we adopted the p-type modulation doped QD laser wafers 

[4-6] used in Ref. 7, rather than the undoped ones for Refs. 

2 and 3, for higher temperature stability. 

A double heterostructure InAs/GaAs QD laser structure 

was grown on a GaAs substrate and layer-transferred onto a 

Si substrate by means of GaAs/Si direct [2] or met-

al-mediated bonding [3] and subsequent removal of the 

GaAs substrate. The InAs/GaAs QD laser structure was 

grown on a GaAs (100) substrate by molecular beam epi-

taxy [4-6]. The laser structure consisted of a GaAs layer 

embedded with eight layers of self-assembled InAs QDs 

with a per-layer density of 6 × 10
10

 cm
-2

. The GaAs barrier 

layers in between the QD layers were partly p-type doped. 

The GaAs layer was clad with p- and n-type Al0.4Ga0.6As 

layers. An Al0.7Ga0.3As etch-stop layer with a thickness of 1 

m was grown between the GaAs substrate and the lower 

Al0.4Ga0.6As clad.  

The QD laser structure wafer was bonded at 300 ºC on-

to an epi-ready p-type Si (100) wafer doped with boron 

with a doping concentration of 3 × 10
19

 cm
-3

 by direct [2] 

or metal-mediated wafer bonding [3]. The GaAs growth 

substrate was then removed by multistep selective wet 

etching. Following the wafer bonding and layer transfer, 

broad-area Fabry-Perot lasers with cleaved facets and a 

cavity length of 2 mm were formed by applying 

Au/AuGeNi electrodes by means of electron-beam evapo-

ration to the top (100-m-wide stripes) and bottom of the 

structure. A high-reflection coating was not applied to the 

cleaved edges.  

 

3. Results and Discussion 

Fig. 1 shows the light-current curves of the InAs/GaAs 

QD laser on a Si substrate fabricated by the GaAs/Si direct 

wafer bonding technique, under 500 Hz, 400 ns pulsed 

pumping at varied temperatures. Both of our direct-bonded 

and metal-mediated-bonded lasers on Si substrates operate 

at 100 ºC. This lasing temperature is significantly higher 

than the cases of the previous works for quantum well and 

QD lasers on silicon [8, 9]. This result verifies that III-V 

QD lasers on Si fabricated by wafer bonding are promising 

for light sources in high-density photonic integrated cir-

cuits. 
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Fig. 1 Light-current curves of the 1.3 m InAs/GaAs QD laser on 

a Si substrate at varied temperatures fabricated by GaAs/Si direct 

wafer bonding. 

 

4. Conclusions 

   In summary, we have fabricated 1.3 m InAs/GaAs QD 

lasers on Si substrates by direct- and metal-mediated wafer 

bonding technologies. Both of the on-Si lasers exhibit las-

ing temperature of 100 ºC. This result is an encouraging 

demonstration for III-V QD lasers integrated on Si chips as 

a promising light source in the future silicon photonic inte-

grated circuits. 
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