Optimization of fabrication conditions of HfO₂/SiO₂/Si(100) and Y₂O₃/SiO₂/Si(100) structures

Y. Toyoshima¹, S. Taniwaki¹, Y. Hotta^{1,3}, H. Yoshida^{1,3}, K. Arafune^{1,3}, A. Ogura^{2,3}, and S. Satoh^{1,3}

¹ Hyogo Univ.

2167 Shosha, Himeji, Hyogo 671-2280, Japan

² Meiji Univ.

1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

³ JST-CREST

4-1-8 Honchou, Kawaguchi, Saitama, 332-0012, Japan

E-mail: er13x041@steng.u-hyogo.ac.jp

Abstract

HfO₂/SiO₂/Si(100) We prepared and $Y_2O_3/SiO_2/Si(100)$ structures annealing of by HfO₂/Si(100) and Y₂O₃/Si(100) precursors which were fabricated by PLD. From the structure analysis by XPS, we defined the optimal annealing condition which SiO₂ layer was grown at the HfO₂/Si and Y₂O₃/Si interfaces. The C-V curves of the samples annealed with the optimal condition (700°C, 1 hour) showed a flat band voltage shift in opposite directions. We consider that the shifts are due to dipoles with two different polarities formed by the difference of areal density of oxygen atoms at the HfO₂/SiO₂ and Y₂O₃/Si interfaces.

1. Introduction

Heterointerface of two different materials exhibits unique properties different from each material in bulk state. Recently, Kita et al have reported that the heterointerface between high-k metal oxides (ionic bonding materials) and silicon oxide (a covalent bonding material) induces dipoles due to the displacement of oxygen ions. [1] The displacement is driven by the difference of areal density of oxygen atoms (σ) for the each substance. Oxygen movement occurs from smaller- σ (σ_s) surface to larger- σ (σ_l) surface and the displaced oxygen ion with minus charges and the arising vacancy with plus charges form a countercharge polarization at the interface. The movement is terminated within nanometer scale at achieving equilibrium of the diffusion force with the Coulomb attraction. From the viewpoint of interface engineering, this phenomenon is quite interesting because the electric field arising from the dipoles is usable to modulate interface properties in heterojunctions without any external field. Hence we have attached importance to controlling the dipole properties by designing the stacking structure of high-k/SiO₂.

Previously, the high- $k/SiO_2/Si$ stacks have been fabricated by which the high-k layers are deposited on preformed SiO₂/Si stacks which are prepared by high-temperature oxidation of the Si substrate or deposition of SiO₂ layer. In order to omit the preforming process, we have tried the way to use precursor of high-k/Si. We expected to form the high- $k/SiO_2/Si$ structure by post-annealing treatment of the high-k/Si precursor.

Fig. 1 Schematic illustrates of the sample structures in each step of the fabrication process. (a) and (b) precursive structures of $HfO_2/Si(100)$ and $Y_2O_3/Si(100)$. (c) and (d) Annealed samples of (a) and (b) and inducible dipole directions at the interfaces.

In this study, we demonstrated the formation of $HfO_2/SiO_2/Si$ and $Y_2O_3/SiO_2/Si$ stacks by using the HfO_2/Si and Y_2O_3/Si precursors. Furthermore we optimized the annealing condition by X-ray photoemission spectroscopy (XPS) and capacitance - voltage (C-V) measurements. We here describe the reason why HfO_2 and Y_2O_3 were chosen for the target materials. The reason consists in a difference of σ against the σ of SiO₂. According to Kita's report, it is expected that HfO_2 and Y_2O_3 form two different type of interfaces with SiO₂, that is, $HfO_2(\sigma_i)/SiO_2(\sigma_s)$ and $Y_2O_3(\sigma_s)/SiO_2(\sigma_i)$ interfaces are formed with dipoles in opposite directions.

2. Experimental

HfO₂/SiO₂/Si(100) and Y₂O₃/SiO₂/Si(100) structures were fabricated by the following process. Figure 1 shows schematic illustrates of sample structures to be used to facilitate understanding of the sample fabrication process. Si(100) substrates were cleaned by a conventional RCA method and immersed in HF solution (10%) to remove native oxide layer at the substrate surface. HfO₂ and Y₂O₃ layers were directly deposited on the H-terminated Si(100) substrates by pulsed laser deposition (PLD) at room temperature (RT). The HfO₂/Si(100) and Y₂O₃/Si(100) precursors were then annealed at various temperature from 500~ 800°C in oxygen flow of 1 atm by a quartz tube furnace. XPS measurements were carried out in order to characterize the sample structure and to optimize annealing conditions for growing the interfacial SiO₂. C-V measurements were done for Au/HfO₂/SiO₂/Si(100)/Au and Au/Y₂O₃/SiO₂/Si(100)/Au samples. The Au electrodes were fabricated by using a thermal evaporation technique.

3. Result and discussion

Figures 2(a) and (b) show the XPS spectra of Si 2p core-level region for the HfO₂(2.5nm)/Si and $Y_2O_3(1.5nm)/Si$ samples, respectively. The horizontal axes are plotted as the relative binding energy to the energy position of Si⁰ peak which comes from the silicon substrate. As seen by the Si^0 peak in both the spectra, the HfO₂ and Y_2O_3 thicknesses are thin enough to observe the interface structure by XPS. The broad peaks located at higher-binding-energy region of the Si⁰ peaks are identified with overlayer Si atoms. The intensity ratio of overlayer peak and to Si⁰ peak corresponds to thickness of overlayer. Overlayer thickness d is given by,

$$d = I_{OL} \ln \left(\frac{I_{OL}}{I_{Si}} \frac{I_0}{I_{\infty}} + 1 \right),$$

where I_{OL} and I_{Si} are the intensity of overlayer peak and Si^0 peak, respectively. I_0/I_∞ is the experimental intensity ratio for a bear Si peak (I_0) to an infinitely thick overlayer peak (I_∞). In Figs.2 (a) and (b), the I_{OL}/I_{Si} values for the HfO₂ and Y_2O_3 layer dramatically increase above 700°C. Simultaneously, the overlayer peaks shift to higher binding energy position which can be attributed to the oxidization state of SiO₂. From these things, we consider that SiO₂ layers were grown at the HfO₂/Si and Y_2O_3/Si interfaces by the annealing.

Next, we measured the C-V characteristics of the Au/HfO₂(25nm)/Si(100)/Au and Au/Y2O3(15nm)/Si(100)/Au structures. Figure 3 shows typical C-V curves for the samples annealed at 700°C for 1 hour. In each curve, a flat band voltage shift in opposite directions was observed. Additionally the samples annealed blow 600°C did not show such large V_{FB} shifts. Since the C-V curves show no hump feature and small clockwise hysteresis, we presume that the effects of interface states and mobile ions are low on the V_{FB} shifts. Other possible origin of the V_{FB} shifts are induction of fixed charges inside the layer or (and) the dipoles at the interfaces. If the fixed charge induction is dominant, the V_{FB} shifts of HfO₂/Si and Y₂O₃/Si should be the same direction, because the cause of the fixed charges is mainly oxygen vacancy which has positive charge, in oxide material. On the other hand, if the dipole induction is dominant, we can consistently explain the V_{FB} shifts in the C-V curves. The XPS result indicates annealing above 700 °C formed the HfO₂/SiO₂ and Y₂O₃/SiO₂ interfaces in the samples. This temperature corresponds to generation temperature of the V_{FB} shift in the C-V curve. In addition, the dipole formations of "+/-" polarity at the HfO₂/SiO₂ interface and "-/+" polarity at the Y_2O_3/SiO_2 interface can explain the different directions of the V_{FB} shift in each samples. Hence, we conclude that the interface dipoles with the opposite polarity are generated at the interface.

Fig. 2 Si 2p core-level spectra for (a) $HfO_2/Si(100)$ and (b) $Y_2O_3/Si(100)$ samples annealed at several temperature.

4. Conclusions

In this study, we prepared HfO₂/SiO₂/Si(100) and Y₂O₃/SiO₂/Si(100) structures from HfO₂/Si(100) and $Y_2O_3/Si(100)$ precursors by the annealing treatment and confirm the dipole formation at the HfO₂/SiO₂ and Y_2O_3/SiO_2 interfaces. The HfO₂/Si(100) and $Y_2O_3/Si(100)$ structures were fabricated by PLD. For annealing treatment above 700°C for 1 hour, considerable thickness of a SiO₂ layer was grown at the HfO₂/Si(100) and Y₂O₃/Si(100) interfaces, and the V_{FB} shifts caused by the dipole formation were observed in the samples. From the results, the optimal conditions for the annealing treatment was defined at 700°C for 1 hour. We conclude that high-k/SiO₂ structure with the interface dipoles can be achieved by the way to using precursive structures which we demonstrate in this study. We believe that this way offer a simple method to fabricate high-k/SiO₂ stacks. And the interface dipoles also offer new avenues to control internal electric field in heterojunction devices without external field.

Fig. 3 C-V curves of the HfO₂/p-Si(100) and $Y_2O_3/Si(100)$ samples annealed at 700°C for 1hour.

References

- [1] K. Kita et al., Appl. Phys. Lett. 94,132902 (2009)
- [2] L. Q. Zhu et al. Jpn. J. Appl. Phys. 50 (2011) 031502