Theoretical Investigation of Electrical Properties of MoS₂ FETs with Strained Channel Layer

Naoki Harada, Shintaro Sato, and Naoki Yokoyama

Green Nanoelectronics Center, AIST 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan Phone: +81-29-849-1583, E-mail: harada-naoki@aist.go.jp

Abstract

The electrical properties of n-type short channel molybdenite (MoS₂) field-effect transistors (FETs) with biaxial strain were investigated theoretically. First -principle bandstructure and density of states calculations for monolayer MoS₂ under strain were performed, and the results were used to calculate the I_d-V_g characteristics of FETs under the assumption of ballistic transport. A maximum I_{on}/I_{off} ratio of 1.0×10^8 was achieved at 1% compressive strain.

1. Introduction

Two-dimensional (2D) materials are attractive for use in future electronic and optical devices. Graphene, the most commonly used 2D material, however, is not well suited for switching devices due to its zero bandgap properties [1]. More promising are some of the transition metal dichalcogenides (TMDCs), a family of 2D materials, due to their semiconducting properties and finite bandgap [2]. They are particulary promising for digital switching applications, and many experimental and theoretical studies have been made of TMDC-channel FETs in the last few years [3-6]. It is also theoretically predicted that introducing strain into monolayer MoS₂, one of TMDCs, modifies the bandsturucture [7, 8].

We theoretically investigated the effect of biaxial strain on the electrical properties of n-type short-channel MoS₂ field-effect transistors (FETs). The dependence of the on-current to off-current (I_{on}/I_{off}) ratio on strain was examined, and a means for increasing I_{on}/I_{off} was identified.

2. Simulations

We investigated the bandstructure and the density of states (DOS) of monolayer MoS_2 under biaxial strain, which is represented by a parameter α (Fig. 1). First-principle calculations were performed on the basis of density functional theory (DFT) as implemented in the Atomistix Toolkit (version 12.8) [9]. The local density approximation (LDA) was used to describe the exchange-correlation potential.

The calculated bandstructure and DOS for $\alpha = -0.02$, 0, and +0.02 are shown in Figs. 2 and 3. In the unstrained case ($\alpha = 0$), both the conduction band minimum (CBM) and the valence band maximum (VBM) were at K-point, which

means monolayer MoS₂ has a direct bandgap. In the compressive strain case ($\alpha = -0.02$), CBM moved to a point between K-point and Γ -point, leaving VBM at K-point. In the tensile strain case ($\alpha = +0.02$), VBM moved to Γ -point. This direct-to-indirect gap transition due to biaxial strain was also found by Yun *et al.* [7] and Peelaers *et al.*[8].

Figure 4 shows the dependence of the bandgap and the electron effective mass of strained monolayer MoS_2 on α . The bandgap had a maximum of 1.89 eV under slightly compressive conditions ($\alpha = -0.01$), where the corresponding lattice parameter was 0.313 nm. Both large compressive and tensile strain reduced the bandgap. The effective mass showed a similar dependency: it had a maximum of 0.55 at $\alpha = -0.01$. In the area of our calculation, the smallest mass (0.42) was obtained at $\alpha = +0.05$. The large bandgap and light mass are incompatible.

The electronic properties of n-channel monolayer MoS_2 FETs with biaxial strain were investigated theoretically by using Rahman's ballistic short-channel FET model [10] in which the self-consistent potential at the top of the barrier U_{scf} and the carrier density N are first self consistently solved. Once U_{scf} and N are determined, the drain current I_d is calculated assuming ballistic transport for electrons surmounting the top of the potential barrier:

$$I_{d} = \frac{q}{2} \int v_{x} D(E - U_{scf}) [f_{1}(E) - f_{2}(E)] dE , (1)$$

where, *D* is DOS, v_x is electron velocity determined from the effective mass, and f_1 and f_2 are the Fermi-Dirac distribution functions at the source and drain respectively. The gate insulator thickness and permittivity were assumed to be 4 nm and 16, respectively.

Figure 5 shows the I_d-V_g characteristic at drain voltage V_d of 1 V on logarithmic (left axis) and linear scales (right axes) for an n-channel MoS₂ FET. An I_{on}/I_{off} of 2.8 $\times 10^7$ was attained at a 1 V logic swing. This roughly agrees with experimental I_{on}/I_{off} of 10⁸ at a logic swing of about 4 V [4].

The dependence of I_{on}/I_{off} on strain α is plotted in Fig. 6. A maximum I_{on}/I_{off} of 1.0×10^8 was achieved for a compressive strain of -0.01. We attributed this to the large bandgap since the bandgap was also maximum at this point. The maximum on-current was obtained at $\alpha = +0.05$ since the effective mass became minimum at that point.

3. Conclusions

The electrical properties of monolayer MoS₂ FETs with biaxial strain were investigated theoretically. Strain affects FET characteristics through changes in the bandgap and effective mass. The maximum I_{on}/I_{off} of 1.0×10^8 was attained at 1% compressive strain while the on-current was smaller than with larger tensile strain. This means that I_{on}/I_{off} can be increased by maximizing the bandgap.

Acknowledgements

This research is granted by JSPS through FIRST Program initiated by CSTP.

References

- [1] F. Schwierz, Nature Nanotechnology 5 (2010) 487.
- [2] Q. H. Wang et al., Nature Nanotechnology 7 (2012) 699.
- [3] Y. Yoon *et al.*, Nano Letters **11** (2011) 3768.
- [4] B. Radisavljevic et al., Nature Nanotechnology 6 (2011) 147.
- [5] B. Radisavljevic et al., Appl. Phys. Lett. 101 (2012) 043103.
- [6] W. S. Hwang et al., Appl. Phys. Lett. 102 (2013) 043116.
- [7] W. S. Yun et al., Phys. Rev. B 85 (2012) 033305.
- [8] H. Peelaers et al., Phys. Rev. B 86 (2012) 241401.
- [9] M. Brandbyge et al., Phys. Rev. B 65 (2002) 165401.
- [10] A. Rahman *et al.*, IEEE Trans. Electron Devices **50** (2003) 1853.

Fig. 1 (a) Bulk unit cell of MoS₂. (b) Monolayer of MoS₂. (c) Unit cell of strained monolayer MoS₂ with lattice constant of *a*. Parameter α defines the strain: *a*₀ is lattice constant of unstrained monolayer MoS₂, 0.316 nm.

Fig. 2 Lowest conduction band and highest valence band of strained monolayer MoS₂ with $\alpha = -0.02$, 0, +0.02.

Fig. 3 DOS in unit cell of strained monolayer MoS₂ with $\alpha = -0.02, 0, +0.02$.

Fig. 4 (a) Dependence of bandgap of strained monolayer MoS_2 on α . (b) Electron effective mass of strained monolayer MoS_2 . Circular symbols indicate conduction band minimum is at K-point; square ones indicate that it is between K- and Γ -point.

Fig. 5 Calculated transfer curve of n-channel monolayer MoS_2 FET for $\alpha = 0$. Drain voltage, gate insulator thickness, and specific permittivity were 1 V, 4 nm, and 16, respectively.

Fig. 6 On-current to off-current ratio for n-channel monolayer MoS_2 FET as a function of strain α .