Schottky Barrier Height Modulation of the Metal/4H-SiC Contact by Ultra-Thin Dielectric Insertion Technique

Bing-Yue Tsui, Jung-Chien Cheng, Lurng-Shehng Lee*, Chwan-Ying Lee*, and Ming-Jinn Tsai*

Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University
ED641, No.1001, Ta-Hsueh Road, Hsinchu, Taiwan, 30010, R. O. C.
* Electronics and Optoelectronics Research Laboratory, Industrial Technology Research Institute, Taiwan

Abstract
Schottky barrier height modulation of the metal/4H-SiC contact by dielectric insertion is investigated. A thin TiO₂ layer can reduce the barrier height by 0.2 eV. The main mechanism is attributed to the interface dipole because the pinning factor does not change significantly. The dielectric-inserted contact is stable after high current stress. Therefore, this work provides a technique to control the barrier height of Schottky barrier diode and to form low resistance ohmic contact.

1. Introduction
Silicon carbide (SiC) is an important wide bandgap semiconductor material for high power devices. Several kinds of SiC power devices have been proposed. However, some fundamental properties have not been well understood, for example, Schottky barrier height (SBH) control and the contact resistance of the metal/SiC contacts. Due to the Fermi-level pinning effect, the SBH (\(\Phi_{\text{bn}}\)) can be expressed as \(\Phi_{\text{bn}} = S (\Phi_m - \Phi_{\text{CNL}}) + (\Phi_{\text{CNL}} - \chi)\), where S is the pinning factor defined as \(d\Phi_{\text{bn}}/d\Phi_m\), \(\chi\) is the electron affinity of the semiconductor, and \(\Phi_{\text{CNL}}\) is the semiconductor charge neutrality level. Fig. 1 shows the published SBHs as a function of the metal work function (\(\Phi_m\)) [1-7]. The pinning factor is around 0.6~0.7. Basically, lower \(\Phi_m\) achieves lower SBH and thus lower contact resistance. However, low \(\Phi_m\) metals are active and maybe not compatible with semiconductor process. It has been reported that dielectric insertion can reduce the SBHs on Si, Ge, and GaAs [8~10]. In this work, the SBH modulation on 4H-SiC by the dielectric insertion technique is studied.

2. Experiments
Simple Schottky barrier diodes (SBDs) were fabricated on a nitrogen doped 4H-SiC substrate containing a 5-μm-thick epitaxial layer with a doping concentration of 3×10^{15} cm⁻³. TiO₂ is selected as the insertion dielectric due to the negative electron barrier between SiC and TiO₂ as shown in Fig.2. The TiO₂ layers were deposited at 250 °C using TDMAT and H₂O as precursors. Contact metals were deposited by thermal evaporation and sputtering processes. Finally, a 300-nm-thick Al was deposited for probing followed by a 500 °C vacuum annealing. The key process conditions are listed in Table I.

3. Results and Discussion
Fig.3 shows the I-V characteristics of the Ti SBDs with various TiO₂ thicknesses. The SBD without TiO₂ layer exhibits the highest SBH and the lowest leakage current. Fig.4 shows the SBH extracted from the thermionic model. The SBH decreases from 0.9 eV to 0.63 eV as the TiO₂ thickness increases from 0 nm to 5 nm. As the dielectric thickness exceeds 5nm, a slightly increase of the SBH is observed. This phenomenon is similar to that observed on Ge substrate [10]. Fig.5 shows the on-resistance (R_{on}) extracted at V=\(\Phi_{\text{bn}}\). The R_{on} does not degrade by the TiO₂ layer as expected.

The possible mechanisms of the SBH reduction include metal-induced gap state (MIGS) model, dipole model, and fixed charge model [11]. Fig.6 shows the SBHs of the SBDs with various contact metals. The pinning factor of the SBDs without dielectric insertion is 0.8, which is similar to that reported in literatures. If the mechanism of the SBH reduction comes from the passivation of the MIGS by the inserted dielectric, the pinning factor should be close to 1. Since the pinning factor of the TiO₂-inserted SBDs increases slightly to 0.85 as shown in Fig.6, the MIGS model may be not the dominant mechanism. Because a 2-nm-thick TiO₂ insertion reduces the SBH by ~0.2 eV on the Al, Ti, and Ni contacted diodes, it is suggested that the interface dipole which resulting potential drop is the main mechanism for the SBH reduction. Fig.7 shows that the SBH and ideality factor of the Ti SBD with 2-nm-thick TiO₂ are stable after high current stress.

The I-V characteristics of the Ni SBDs with 2-nm-thick TiO₂ layer and without TiO₂ layer are compared in Fig.8. With dielectric insertion, a kink is observed at forward bias while the reverse biased leakage current increases. Most of the TiO₂-inserted SBDs show this phenomenon. It is unlikely that the thermal ALD process would increase defects in SiC. It is thus suggested that a very low SBH area exists in these diodes. The low SBH can be extracted from the reverse bias current considering the complete thermionic field emission model [11] and the SBH as low as 0.4 eV is shown in Fig.9. The mechanism is not clear at this moment.

4. Conclusions
A thin TiO₂ layer insertion can reduce the SBH of the metal/4H-SiC contact by 0.2 eV. The pinning factor increases slightly from 0.8 eV to 0.84 eV so that the SBH modulation is attributed to the interface dipole. The dielectric-inserted contact is stable after high current stress. It is suggested that this technique can be used to control the SBH of SBD and to form low resistance ohmic contact.
Acknowledgements

The authors would like to thank the Nano Facility Center at National Chiao Tung University for the processing environment. This work was supported in part by the Ministry of Education in Taiwan under ATU Program, and was supported in part by the National Science Council, Taiwan, R.O.C. under the contract No. NSC 99-2221-E-009-173.

References

Table I. Key process conditions.

<table>
<thead>
<tr>
<th>Contact metal</th>
<th>Al (300nm)</th>
<th>Ti (100nm)</th>
<th>Mo (30nm)</th>
<th>Ni (100nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposition method</td>
<td>Thermal evaporation</td>
<td>Sputter</td>
<td>Sputter</td>
<td>Sputter</td>
</tr>
<tr>
<td>TiO2 (nm)</td>
<td>0, 2</td>
<td>0, 1, 2, 5, 8</td>
<td>0, 2</td>
<td>0, 1, 2, 5, 8</td>
</tr>
<tr>
<td>Annealing</td>
<td>500 ºC/5min/vacuum furnace</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.1 Schottky barrier height as a function of metal work function reported in literatures. The pinning factor is around 0.6-0.7.

Fig.2 Band diagram of a TiO2-inserted metal/4H-SiC Schottky barrier diode. The conduction band of TiO2 is lower than that of the SiC, which is preferred to avoid electron tunneling resistance.

Fig.3 Current-voltage characteristics of the Ti SBDs with various TiO2 thickness. Thicker TiO2 results in lower SBH and higher reverse current.

Fig.4 Schottky barrier height as a function of TiO2 thickness. A 0.2 eV SBH reduction is achieved with a 2-nm-thick TiO2 insertion.

Fig.5 On-resistance as a function of TiO2 thickness at V=φbn. The inserted TiO2 does not degrade the on-resistance.

Fig.6 Schottky barrier height as a function of metal work function. The inserted TiO2 does not change the pinning factor significantly.

Fig.7 Schottky barrier height and ideality factor of the Ti/TiO2(2nm)/SiC SBD after current stress at ~300 A/cm² for 15,000 seconds. Both parameters are very stable.

Fig.8 Current-voltage characteristics of Ni SBDs with and without TiO2 insertion layer. Most of the TiO2-inserted SBDs show similar kink effect, which indicate the existing of a low Schottky barrier area.

Fig.9 Schottky barrier heights extracted by the complete thermionic-field emission model at reverse bias. The Schottky barrier height of the low barrier region is about 0.4 eV.