Effect of dynamic stress on OFF leakage of nanoscale pMOSFETs at high temperature

Gang-Jun Kim1, Ji-Hoon Seo1, Donghee Son1, Seonhaeng Lee1, Cheolgyu Kim1 and Bongkoo Kang1

1 Dept. of Electrical Engineering, Pohang University of Science and Technology, Pohang Gyeongbuk 790-784, Republic of Korea

Abstract

This paper investigates the degradation of the off leakage current I_{off} under a dynamic stress which appears in nanoscale pMOSFETs. Experimental results showed that OFF-state stress in the dynamic stress generated negative oxide charges N_{ox} in a drain edge and a shallow trench isolation(STI). N_{ox} was the dominant cause of the shift of I_{off}, ΔI_{off}, and ΔI_{off} increased when channel length L was short. Moreover N_{ox} in the STI was hard to recover. As a result, I_{off} under the dynamic stress increases significantly at the short channel pMOSFETs. These observations indicate that the effect of the dynamic stress in pMOSFETs on I_{off} increases with scaling down of L. Thus, the dynamic stress in pMOSFETs should be seriously considered when evaluating the short channel pMOSFETs.

1. Introduction

CMOS inverters are widely used owing to a low cost, a high power efficiency, and a high density. CMOS inverters operate with alternating a gate voltage V_g and a drain voltage V_d and a high temperatures atmosphere. Due to the operating condition, negative bias temperature instability (NBTI) is considered as the most serious reliability problem of pMOSFET. NBTI occurs during the ON-state period ($V_g = V_{str}$, $V_d = 0$), and generates interface traps N_i and positive oxide traps [1-3].

Several researchers reported that the defects induced by NBTI are partially recovered during the OFF-state period ($V_g = 0$ V, $V_d = V_{sub}$) [4-5]. However, when the channel length is scaled down, defects are generated during the OFF-state stress. Lee et al. reported that the OFF-state stress induces negative electron charges N_{ox} and interface traps N_i at the drain edge. These traps lead to the shift of the threshold voltage V_{th} and I_{off} within the temporary time [6].

Recently, some of researchers reported that electron traps are generated in the shallow trench isolation (STI) of the near drain [7-8]. This is caused by hot electron induced punch through (HEIP) which is similar with the OFF-state stress condition. Electron traps in the STI causes the hump in the drain current I_d vs V_g curve and reduce the effective channel length. Especially, this effect is more serious in the short width pMOSFETs [8]. In the sub-micron pMOSFET device, I_{off} increases substantially when the electrons are trapped in the STI.

This paper investigates that reliability of the sub-micron channel pMOSFET under dynamic stress which alternates ON-, OFF-state. Moreover, the effect of electron traps in STI generated by OFF-state stress is considered.

2. Experimental Result

The pMOSFET for the experiment were fabricated by using sub-28nm CMOS technology. The devices were p+ poly-Si gate pMOSFETs with gate lengths of 0.054-0.065 μm and gate widths of 0.25-10 μm. The equivalent oxide thickness of the SiON gate dielectric is 2.2 nm. The ON-state stress condition is $V_g = -2.8$ V, $V_d = V_{sub} = 0$ V (source voltage V_s, substrate bias V_{sub}), at a temperature $T = 125$ °C. And OFF-state stress condition is $V_g = -2.8$ V, $V_d = V_{sub} = 0$ V at $T = 125$ °C. The stress voltage periodically is interrupted to measure V_{th}, I_{off} using a B1500a semiconductor device analyzer. V_{th} was defined as the V_g at the $I_d = 2$ μA/mm. I_{off} is defined as drain current at $V_g = 0$ V, $V_d = -2$ V.

The ON-state stress and the OFF state stress were subjected to pMOSFET with $L = 54$ nm. During the ON-state stress, $|\Delta V_{th}|$, shifts of the subthreshold slope $\Delta SS = \frac{\partial V_{th}}{\partial \log I_{d}}$ and positive N_{ox}, extracted using the mid-gap voltage method [9] were increased (Fig. 1, and inset). These changes coincide with the typical NBTI degradation which creates donor-like N_i and positive N_{ox}. While OFF-state stress was applied, $|\Delta V_{th}|$ which was increased during the ON-state stress was decreased, whereas ΔSS was increased continuously. Negative N_{ox} were also increased significantly. Although, N_i is monitored by the variation of ΔSS, ΔSS doesn’t reflect the effects of N_i completely in this case of OFF-state stress due to the negative N_{ox} in the STI. Negative N_{ox} can be generated in the drain edge and the STI which is close to the channel region during the OFF-state stress. Negative N_{ox} in the STI induce the hump in the subthreshold drain current region [8] and are hard to be detrapped by any bias conditions. To investigate the effect of N_{ox} in the STI, I_d of devices with different Ws was measured. I_d of $W = 0.25$ μm had the bigger hump than that of $W = 2$ μm, 10 μm after OFF-state stress (Fig. 2). Negative N_{ox} in the STI, which are near the channel edge, cause the parasitic channel [7]. As the W of the pMOSFET was decreased, the channel region was more affected by the parasitic
channel. Consequently, the effect of negative N_{ox} in the STI becomes a serious problem in small width devices. When OFF-, ON-states stresses were applied to the pMOSFET, ΔV_{th} was degraded during the stress, however gate-drain overlap current ΔI_{gd} was rarely degraded by the OFF-state stress (Fig. 3 and inset). This experimental observation indicates that defects are more generated in the STI than in the drain edge of channel region.

The shifts of I_{off} caused by the dynamic stress were observed for the pMOSFET with $L = 54$, 65 nm and $W = 2$, 10 μm (Fig. 5). I_{off} of the $L = 54$ nm device was increased more than that of $L = 65$ nm device. This observation is similar with currently reported result [6]. I_{off} of $W = 2$ μm device was also increased greatly compared to that of $W = 10$ μm device. The cause of the phenomenon was negative N_{ox} in STI.

The degradation of ΔI_{off} and $|\Delta V_{th}|$ by the dynamic stress with AC condition were observed for the pMOSFET with $W/L = 2$ μm/54 nm (Fig. 5). The shift of I_{off} is faster than $|\Delta V_{th}|$. This result indicates that I_{off} under dynamic stress in small dimension pMOSFETs should be considered.

3. Conclusions

The effects of the dynamic stress on the small dimension of pMOSFETs are investigated. Negative N_{ox}, which are generated during the OFF-state, trapped in the STI augmented I_{off} significantly in condition of the dynamic stress. This effect of negative N_{ox} increased in small dimension pMOSFETs. Especially, as the width of pMOSFET was decreased, negative N_{ox} had more influence on the device. The degradation of I_{off} was more serious than that of $|\Delta V_{th}|$ under dynamic stress with the AC condition. These experimental observations suggest that as pMOSFETs scaled down continuously, ΔI_{off} should be considered for predicting the lifetime of small width pMOSFETs.

Acknowledgements

This work was supported by IT Consilience Creative Program of MKE and NIPA (C1515-1121-0003)

References