Enhanced Subthreshold Slope and On-state Current in Tunneling Thin-Film-Transistors Using Metal Induced Lateral Crystallization

Yi-Hsuan Chen, Li-Chen Yen, Tien-Shun Chang, Tsung-Yu Chiang, Po-Yi Kuo, and Tien-Sheng Chao

Department of Electrophysics, National Chiao Tung University, SC704, Science Building III, 1001 Ta Hsueh Rd, Hsinchu 300, Taiwan
Phone: +886-3-5131367 E-mail: HopTrains@gmail.com

Abstract
In this study, we propose a tunneling TFT fabricated by MILC method for the first time. The MILC tunneling TFTs demonstrate a lower subthreshold swing, ~232 mV/dec, than the other tunneling TFTs (T-TFTs) and a high on/off ratio > 10^6 at V_{DS}=1V without any hydrogen related plasma treatment.

1. Introduction
Recently, TFETs are receiving considerable attention for their potential to replace conventional metal-oxide-semiconductor- field-effect transistors (MOSFETs) for future low power application [1-3]. While considerable attention has been focused on sc-Si TFETs [2-4], a literature on issues of polycrystalline-Si T-TFTs has emerged slowly at present and has only focused on the devices crystallized by excimer-laser annealing (ELA)[5, 6] or by sequential lateral solidification (SLS) growth technique [7].

To further improve the tunneling current and to obtain a steeper subthreshold slope of the devices, T-TFTs and conventional TFTs (C-TFTs) fabricated with MILC method on the same wafer were demonstrated and characterized in this paper.

2. Experimental Methods
The process flow of the T-TFT is shown in Fig. 1. A p-type Si wafer capped with a 550 nm wet oxide layer was used as a starting substrate. A 70-nm-thick amorphous-Si layer was deposited by low pressure chemical vapor deposition (LPCVD) at 500°C and crystallized with MILC method as the channel film. The active region was defined by an i-line stepper and patterned. A 200 nm SiO\textsubscript{2} dummy gate was formed, and tunneling TFTs were implanted using boron and phosphorous to a dose of 5×1015 cm-2 as source and drain, and were annealed at 600°C in N\textsubscript{2} ambient to activate the dopants after dummy gate removal. At the same time, a C-TFT was fabricated on the same wafer with only phosphorous doping. A 30 nm gate oxide was then deposited by electron-beam evaporation. Then, aluminum metallization was used as source/drain contact and gate electrode.

3. Results and Discussion
The transfer characteristics of 40 tunneling TFTs and 40 control TFTs (C-TFTs) are presented in Fig. 2. A significant improvement in off-state leakage was obtained because of the large barrier for field emission. It is worth noting that the on-state current of the T-TFTs is only an order lower than the C-TFTs and that the subthreshold slope of the T-TFTs steeper than that of the C-TFTs is first achieved. The comparisons of the device parameters for different T-TFTs [5-7] are listed in Table. I. Figure 3 (a) and (b) present the output characteristics of the C-TFTs and T-TFTs, respectively. Despite the fact that the drive current of tunneling FETs is generally much lower than MOSFETs owing to relatively low tunneling efficiency [8], the on-state current of the MILC T-TFTs is only an order lower because of the occurrence of trap assisted tunneling (TAT).

To find out the approach to further improve the subthreshold slope of the MILC T-TFTs, the activation energy and interface state density (N\textsubscript{it}) were measured. The activation energy was extracted at V_{D} = 0.1V and plotted against V_{G} in Fig. 4. Three different gate bias ranges can be distinguished corresponding to different transport mechanisms: Shockley-Read-Hall generation, TAT, and BTBT. The activation energy was around 0.55 eV in the negative gate bias region, indicating that Shockley-Read-Hall generation dominates [9]. An activation energy of 0.3-0.5 eV was extracted at the subthreshold region, which were commonly attributed to TAT and/or emission from traps [9]. Finally, as gate bias increased, BTBT began and resulted in an activation energy of only 0.10 eV [9].

The T-TFTs were subjected to NH\textsubscript{3} plasma treatment for 10 minutes, which is helpful to passivate dangling bonds and reduce the amount of interface states. According to the charge-pumping measurement, the N\textsubscript{it} of the T-TFTs (W/L=10μm/5μm) can be suppressed from 1.22×1011 cm-2 to 9.22×1010 cm-2 (Fig. 5). Both the subthreshold slope and the on/off ratio are improved after plasma treatment as shown in Fig. 6. As a result, minimizing the occurrence of TAT and the amount of N\textsubscript{it} would be an essential issue to achieve sub-60 mV/dec for T-TFTs.

The dependence of the on/off current on the channel length can be seen in Fig. 7. The drive current and off-leakage of T-TFTs are nearly independent indicating that a large on/off ratio can be well sustained even after length scaling.

3. Conclusions
In conclusion, poly-Si tunneling TFTs have been fabricated and characterized successfully for the first time. The tunneling TFTs with MILC channels show high tunneling current, low off-leakage, steep subthreshold swing, and...
large on/off ratio. These devices will be suitable for the application in low standby power circuits, as drivers of AMLCDs, and as three-dimensional integrated circuits in the future.

Acknowledgements
We would like to thank the National Science Council of the Republic of China (Taiwan) for financial support of this research under contract numbers NSC 100-2221-E-009-012-MY3, and we would also like to thank the National Nano Device Laboratory (NDL) and the Nano Facility Center of National Chiao Tung University for equipment access and technical support.

References

Table I Comparison of Several Important Parameters of The Tunneling TFTs With Previous Studies.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Length (μm)</td>
<td>10</td>
<td>10</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>Channel Film Thickness (μm)</td>
<td>70</td>
<td>70</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Average S.S. (mV/dec)</td>
<td>232</td>
<td>297</td>
<td>> 2500</td>
<td>~ 400</td>
</tr>
<tr>
<td>Layer (μA/μm²)</td>
<td>0.59</td>
<td>1.82</td>
<td>< 10</td>
<td>< 0.1</td>
</tr>
<tr>
<td>On-Off Ratio</td>
<td>6.3 × 10⁶</td>
<td>3.6 × 10⁶</td>
<td>> 10⁶</td>
<td>> 10³</td>
</tr>
</tbody>
</table>

Fig. 1 Key process flows of the tunneling TFTs.

Fig. 2 Transfer characteristics of tunneling TFTs and control TFTs.

Fig. 3 Output characteristics of (a) tunneling TFTs and (b) control TFTs.

Fig. 4 Activation energy of the tunneling TFT versus the gate bias.

Fig. 5 The on/off ratio and subthreshold slope comparisons between T-TFTs before and after plasma treatment at V_D = 1V. The channel length/width is 10/10 μm.

Fig. 6 The T-TFT charge pumping current as a function of frequency before and after plasma treatment.

Fig. 7 The T-TFTs on/off current as a function of the gate length at V_D = 0.1V. The channel width is 10 μm.