A High-Voltage Isolated Current Sense Amplifier for Fully CMOS Compatible Non-volatile Memories

ChihYang Huang, Chia-You Wu and Hongchin Lin

Dept. of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan
Phone: 886-4-2284-0688 ext. 250 e-mail: hclin@dragon.nchu.edu.tw

Abstract—A high-speed current sense amplifier (SA) blocking 8.3V during program/erase of the CMOS compatible non-volatile memories is proposed and fabricated using the standard 0.35\(\mu\)m CMOS process. After the memory cells are programmed, the measured access time is as fast as 13ns for the current difference of 3\(\mu\)A at \(V_{DD} = 3.3V\).

1. Introduction

The recent trend of embedded non-volatile memories (NVM) includes resistive RAM (RRAM) [1], magnetoresistive RAM (MRAM) [2] and ferroelectric RAM (FeRAM) [3]. They can be integrated with the standard CMOS logic processes with shorter program/erase times than those of the conventional flash memories. However, the extra masking and processing steps may result in raised cost and degraded yield.

To have the cost-effective embedded NVM without the extra processing steps or design rule violation, this paper utilizes the multiple time programming (MTP) [4] cells using the standard TSMC 0.35\(\mu\)m CMOS process. The MTP Cell composed of two 3.3V NMOS transistors in series is shown in Fig. 1. The operation conditions are listed in Table I. Since the BL nodes could be biased at 8.3V or 0V, the SA connected to the BL nodes may be overstressed during program/erase owing to \(V_{DD} = 3.3V\). Thus, the high-voltage (HV) isolation circuits are required to avoid damage of the SA.

2. System Architecture

Figure 2 illustrates the system architecture of the test chip to control a NOR type MTP memory array. “din” and “dout” are the input and output data. The WL, BL and SL drivers provide the corresponding biases for word lines (WL), bit lines (BL) and source lines (SL), respectively. The HV isolation circuit is placed between the BLs of memory array and the current SA to ensure the device reliability. This paper presents the design technique of the circuit blocks marked by the bold lines in Fig. 2.

3. The Sense Amplifier with High-Voltage Isolation

The proposed current SA sink the current from the BL to Node blin as shown in Fig. 3, where the RL means the isolation marked by white lines is shown in Fig. 7. Fig. 8 demonstrates the measured waveforms of the output (dout) and the control signals (reset, Saeq, T1) for reading logic 1 from different cells consecutively and reset to 0V alternatively. According to the definitions in Fig. 5, the sensing operation includes 3ns of reset, 6ns of equalize, and 2ns of sensing. That means the access time (AT) is 11ns by simulation. However, it becomes 13ns by measurement because of the parasitic effects of package and measurement systems. The outputs need more time to reach the full swing. That is why the slow rising and falling waveforms of “dout” appear.

4. Simulation and Measurement Results

The simulated waveforms to read one of the memory cells after programming logic 1 are shown in Fig. 6, in which the control signals, saeq, reset, T1 are in the lower panel. Nodes sal, sar, and dout are close to 0V during reset. Then, sal and sar are equalized and pulled to nearly \(V_{DD}/2\) at the equalize state. The sensing operation is started right after saeq=0, and the output buffer is activated by T1=\(V_{DD}\) when the difference between sar and sal is large enough.

The chip microphotograph of two SA’s with HV isolation marked by white lines is shown in Fig. 7. Fig. 8 demonstrates the measured waveforms of the output (dout) and the control signals (reset, Saeq, T1) for reading logic 1 from different cells consecutively and reset to 0V alternatively. According to the definitions in Fig. 5, the sensing operation includes 3ns of reset, 6ns of equalize, and 2ns of sensing. That means the access time (AT) is 11ns by simulation. However, it becomes 13ns by measurement because of the parasitic effects of package and measurement systems. The outputs need more time to reach the full swing. That is why the slow rising and falling waveforms of “dout” appear.

Table II lists the performance comparison of the recent published SA’s used in non-volatile memories. The sensing delay time (SDT) of the proposed SA with the HV...
isolation circuit is 1.4 ns at sensing current (SC) of 3 µA with \(C_L \) of 0.5 pF. Besides, the measured access time is shorter than that in Ref. [8].

5. Conclusions

This paper proposes a current SA with HV isolation circuit design techniques to avoid high voltage stress for the CMOS compatible memories using TSMC 0.35 µm CMOS technology. Both the memory cells and the circuits were designed without violating the design rules. Owing to equalizing of the SA to \(V_{DD}/2 \) to enhance the sensing speed, the simulation and measurement results of the test chip show the SDT=1.4 ns and AT=13 ns when SC=3 µA. We can expect it can be applied to almost all types of embedded memories without reliability issues.

Acknowledgements --- The authors would like to acknowledge the Chip Implementation Center (CIC) of the National Applied Research Laboratories (NARL) of Taiwan for the support in chip fabrication. This work was supported by National Science Council of Taiwan (NSC 101-2220-E-005-013).