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Abstract 

An intuitive and comprehensive design optimization 

methodology by means of inversion-level and saturation 

-level  parameters is proposed for ultra low power, low 

voltage and high performance analog circuits with mixing 

strong, moderate and week inversion MOSTs' operations. 

 

1. Introduction 

Enabling ultra low power and low voltage analog circuits 

with high performance  is an urgent issue for battery-operated 

portable equipments and implantable biomedical devices. 

Several attempts have been studied and proposed in the light of  

one-equation MOST(MOS-Transistor)'s models[1,2] and 

analog circuits design methodologies[3,4,5]. However each 

one-equation  model has both strong and weak points and the 

proposed design methodologies based on those models are very 

useful but not always  intuitive or comprehensive in searching 

the best design solution for various application specifications.  

This paper presents an intuitive and comprehensive design 

analysis/optimization methodology especially  aiming for ultra 

low power,  low voltage and high performance analog circuits. 

 

2. Synthesized Charge-based MOST Model 

There are two main charge-based one-equation MOST's 

models called as EKV[1] and ACM[2]. The EKV model is the 

first model that gave a novel perspective for MOST's 

one-equation expression including both strong/weak inversions 

and linear/saturation modes by introducing a new parameter of  

'Inversion Coefficient' (IC), but unfortunately the equation 

which combines IC with the gate voltage (Vg) is an artificial 

mathematical approximation and is not accurate in moderate 

inversion region.  On the other hand, the ACM model showed 

the exact physical equation between IC and the gate voltage in 

an implicit function form for the first time, but their defined IC 

is not identical to EKV's. Afterward  EKV's IC was proved to 

be a well-defined center parameter for inversion mode 

criteria[6]. We adopt the synthesized model composed of 

EKV's basic concepts and ACM's physical expressions. 

Fig. 1 shows the concept of EKV's IC, called as i-level(i) in 

this paper. The i-level is the ratio of drain current divided by the 

threshold voltage current, and provides an intuitive numerical 

representation of the MOS inversion level. Strong inversion 

corresponds to i > 10, while weak inversion corresponds to i < 

0.1.  For 0.1< i < 10, MOST is operating in moderate inversion. 

Fig. 2 shows hand calculation fitting comparison between 

conventional model and this new i-level model. This model also 

reproduces temperature-dependent characteristics that is 

indispensable for analog circuits margin/stability analysis. 

 

3. Intuitive Analog-Circuits Optimization Methodology 

The key concept of our design methodology is to start from 

i-level design by using some i-level equations derived from 

application specification, circuits stability and other constraints. 

For this purpose, not only MOST characteristics but also 

system characteristics are described by i-level as shown in 

Fig.3. Table1 shows basic nine i-level expressions for MOST.  

It should be noted that while item6-9 in Table1 contain process 

parameters like Pelgrom coefficient of Avt or MOST size, 

item1-5 are not dependent on those process or size parameters. 

There are two universal characteristics in relation to i-level. 

Fig.4 (right) shows a universal characteristics of saturation 

voltage (Vdsat). The saturation region exists in all inversions 

and lower saturation voltage in moderate and weak inversions 

is a valued benefit for low supply voltage circuits.  Fig.5 shows 

another universal characteristics of gm/Id which represents not 

only current drivability but also variability. The gm/Id curves 

indicate  optimum design size for variability (Table1 item 6) . 

Our design methodology starts from i-level design using 

those universal characteristics, called as 'Universal design' step 

or 'i-design'. This paper introduces a example of our design 

methodology for two stage Miller amplifier as shown in Fig.6. 

The following i-level equation for MOST M1/M2 is derived 

from the stable phase margin requirement, 
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Fig.7(left) shows the solution zone for (i1,i2) under low total- 

current values in case of ωu=100kHz, CL=10pF and the phase 

margin>60 degree. When total current becomes less than 2µA, 

the solution exists in moderate region. Fig.7(right) shows input 

common mode and output range using A values of i3=A3*i1, 

i5=A5*i1 and i4=A4*i2. A tradeoff relationship between total 

current and gain bandwidth is also derived as shown in Fig.8. 

After the 'Universal Design' step, 'PDK-specific Design' step 

begins as shown in Fig.6 by utilizing item6-9 with process and 

size parameters in Table1. The final step is the simulation by 

EDA tool in full consideration of detailed parasitic capacitance 

attributed to MOST design size, while verifications are 

executed including the saturation test  for each MOST 

operation point by using saturation-level criteria that is newly 

defined in this paper(Table1 item 3). Saturated operation of 

Vd>Vdsat(Table1 item4) corresponds to saturation-level(s)>1. 

 

4. Conclusion 

An intuitive design optimization  methodology for analog 

circuits is proposed. This methodology also opens the way to a 

comprehensive design approach for analog circuits with mixing 

strong, moderate and week inversion MOSTs' operations. 
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Fig.1 Concept of inversion(i)-level and Relationship with MOS Design Size
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Fig.5 Temperature Dependent Characteristics for gm/Id(left) and Vbias(right) 
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Fig.6 Case Study of Design Methodology for Two Stage Miller Amplifier
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