
Co-Design of Application Software and NAND Flash Memory for Database Storage System
Kousuke Miyaji

1,2
, Chao Sun

1,3
 and Ken Takeuchi

1

1
Chuo University, Department of Electrical, Electronic, and Communication Engineering, E-mail: miyaji@takeuchi-lab.org

2
Shinshu University, Japan,

3
University of Tokyo, Japan

Abstract
An optimized storage system is proposed by co-designing database

(DB) application software and NAND flash memory based solid-state
drive (SSD). The DB storage engine (SE) utilizes physical information
about the NAND flash which is supplied from the flash translation
layer (FTL) implemented in the SSD controller. Also, the query (DB
unit command) is optimized for NAND flash memory’s operation. By
these treatments, page-copy-less garbage collection (GC) is achieved
and data fragmentation in the NAND flash memory is suppressed. As a
result, SSD performance increases by 3.8 times, power consumption
decreases by 46% and write/erase (W/E) cycles decreases by 62%.

Introduction
Performance in big data applications, such as structured query

language (SQL) DB [1] (Fig. 1), is generally limited by the storages’
speed and reliability. A NAND flash memory based SSD is expected to
be a key storage device to overcome this problem for its fast random
access speed compared with HDD. In NAND flash memory, a page
(cells sharing a same word-line) and block (a group of pages bounded
by select gates) are the write and erase unit, respectively (Fig. 2(a)).
The number of pages per block tends to increase as the technology node
shrinks (Fig. 2(b)). Therefore, SSDs need to handle growing block
sizes and write-erase size asymmetry. Since the present SQL DBs are
originally designed for HDDs, a new DB system that considers the SSD
property like above is required for exploiting the SSD potential.

A data unit in the DB is a row. Row data is stored in the SSD, and
managed by SE, which responds to queries from the SQL server (Fig.
1). When a storage device is specifically used for DB application, its
performance is greatly improved by bypassing the file system (FS),
because the SE can directly control the storage and thus FS overhead
can be removed [1]. However, in SSDs, the FTL inside the SSD
controller manages parallel NAND flash operation, address translation,
wear-leveling, GC and error correction. Particularly, the address
translation and GC can cause unpredictable storage performance
degradation, which is out of SE’s control. Moreover, the DB row’s data
size of a few 100B is much smaller than NAND’s page size of 16kB,
which further aggravates data fragmentation and GC [2] (Fig. 3). In this
paper, SE, FTL and NAND flash memory are co-designed to enhance
overall DB system performance. Unlike the previous works [2,3], this
performance improvement can be achieved without a storage class
memory (ReRAM), which is still in developing phase.

Conventional Database Storage System Issues
The addressing hierarchy in the DB is shown in Fig. 4, in which SE

manages the row data logical address (LA). In the FTL, since the write
data unit in NAND is a page, LAs are mapped to the logical page
addresses (LPAs). LPA is the quotient of the LA divided by the NAND
page size. The NAND physical page location is defined as a physical
page address (PPA). Due to NAND’s W/E cycling limitation, LPA and
PPA are translated in the FTL. Fig. 5 shows the physical write
operation with NAND. When SE overwrites a given LPA, the FTL
translates the target LPA to PPA and read the old data (step 1). Then, in
the SSD controller (FTL), new data from SE is merged with the old
data read from NAND (step 2). Since physical overwrite is not allowed
in NAND, the merged data is written to a new PPA page in the NAND
(step 3). The old PPA page in the NAND becomes invalid (step 4).
After many writes, invalid pages in the SSD accumulate, and GC is
triggered to reclaim free space (Fig. 6). In GC, the remaining valid
pages in the old NAND block are read to the SSD controller (seq. 1, 2)
and then written to a new NAND block (seq. 3). Seq. 1 to 3 is a page
copy. Finally, the old block is erased (seq. 4). GC repeats page copy for
each of the valid pages (Nvalid) in the block-to-be-freed, possibly over
100 times. Thus, GC latency can be over 100ms, which is a severe SSD
performance overhead. It will even get worse in the future SSD, since
the number of pages per block is increasing as discussed in Fig. 2(b).

Proposed Database Storage System
In the proposed scheme, SE, FTL and NAND flash are co-designed

to avoid page copy (Fig. 7). In the conventional scheme, the physical
address layer is not visible to the SE. Writes are dispersed to all NAND
flash blocks due to the policy of logical-physical translation in FTL.

Therefore, valid pages could remain in the next erase block when GC
starts. On the other hand, in the proposed scheme, SE concentrates
writes to the block to be erased at the next GC. Therefore, when GC
starts, there is no valid page left in the target block and page copy is
unnecessary (Figs. 7,8). As a result, the SSD performance is enhanced.

The detailed SE operations for conventional and proposed scheme
are shown in Fig. 9. Insert, Delete and Update are the query commands
that add, eliminate and change the row data. Conventionally (Fig. 9(a)),
during Insert, to avoid data fragmentation in LA space, the new row is
appended to the last row. Delete disables a row in the LA space, which
has no corresponding operation in the FTL (no NAND operation).
Update modifies a row in-place for the same LA. Fig. 10(a) shows an
example of the conventional SE and FTL response when “Insert
Update Insert” are issued. As many rows are added or modified
beforehand, the order of the LPA becomes random in physical address
space. When an LPA becomes completely filled with row data (like
LPA4, 12, 36), the corresponding PPA cannot be invalidated by
subsequent Insert since there is no free space in that LPA. These filled
up LPA (PPA) pages remain valid unless the row data are overwritten
by Update or an empty row space is created by Delete. When SSD
stored data is increased, the number of the filled up pages also increases.
Hence, Nvalid can be large during GC, inducing huge page copy times.

In the proposed scheme, two techniques are introduced (Fig. 9(b)).
First, Insert Address Assist (IAA) allows SE to understand LPA-level
situations by the following information received from FTL, (i) page
size of NAND flash memory to calculate corresponding LPA of the
row LA to be written, (ii) LPAs of the remaining valid pages (PPAs)
that are in the target next block to be erased. Thus, SE can write row
data to the free space in the corresponding LPAs to invalidate the pages
whenever Insert is issued. By these interactions between the SE, FTL
and NAND flash, invalid pages can be concentrated in the next block to
be erased. Also, for each Insert, the target LPA is changed (ex. LPA0
LPA1LPA2…) to evenly distribute data over all the available pages,
and thus avoid the filled up page situation. Second, Update is modified
to a Delete and Insert (Update to Delete + Insert: U2DI) sequence. The
updated row data can be moved to the target LPA in the next erase
block by this sequence. Fig. 10(b) shows an example of the proposed
SE and FTL response. Since Block 0 is the next erase block, FTL
informs LPAs that are allocated to PPA0~3, therefore LPA4~7, to SE
by IAA. By combining IAA and U2DI, the proposed storage can
invalidate all PPAs in the next erase block and thus avoid the page-
copy penalty, regardless of the query access patterns.

Results
A DB system is developed by implementing SE in MySQL [1], and

using a transaction-level-modeling-based SSD emulator for the FTL
and NAND flash [2,3]. Fig. 11 shows the SSD performance, energy
consumption and W/E cycles as a function of SSD free space during a
pattern of random queries of Insert, Delete and Update, with varying
probabilities. In the conventional scheme, as the SSD fills up and free
space decreases, performance, energy consumption and W/E cycles
degrade, because page copy increases as the number of valid pages
with full row data is increased. The extra writes from page copy
increases energy consumption and W/E cycles. In contrast, no
degradation is observed in the proposed scheme, due to the
page-copy-less GC operation (See also Fig. 8). The proposed scheme
has 3.8 times higher performance, 46% less energy consumption and
62% less W/E cycle, when the SSD free space is 20%. Fig. 12 shows
the individual and combined effects of the proposed IAA and U2DI.
IAA and U2DI should be implemented together to maximize the
performance for any amount of SSD free space.

Conclusion
SE in SQL DB, SSD FTL, and NAND flash are co-designed for the

DB storage system. The proposed IAA and U2DI scheme achieve
page-copy-less GC. SSD performance increases by 3.8 times, power
consumption decreases by 46% and W/E cycles decrease by 62% .

Acknowledgement This work is partly supported by NEDO.

References [1] http://www.mysql.com [2] H. Fujii et al., Symp. VLSI Circ., pp.

134-135, 2012. [3] C. Sun et al., NVMTS, pp. 87-88, 2012.

Extended Abstracts of the 2013 International Conference on Solid State Devices and Materials, Fukuoka, 2013,

- 130 -

PS-5-8
pp130-131

0

10

20

30

40

50

60

70

0 20 40 60 80 100

W
ri

te
/e

ra
s

e
 c

o
u

n
t

SSD free space (%)

系列1

系列5

系列9

系列2

系列6

系列10
Prop.

Conv.

-62%

(c)

Insert/Delete/Update
△▲ 10%/10%/80%
□■ 30%/30%/40%
○● 50%/50%/0%

W
ri

te
/e

ra
s

e
 c

y
c

le
s

SSD full
0.0

0.4

0.8

1.2

1.6

0 20 40 60 80 100

T
o

ta
l
E

n
e

rg
y
 (

k
J

)

SSD free space (%)

系列1

系列5

系列9

系列2

系列6

系列10

Conv.

Prop.
-46%

(b)

Insert/Delete/Update
△▲ 10%/10%/80%
□■ 30%/30%/40%
○● 50%/50%/0%

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

(m
J

/q
u

e
ry

)

SSD full

Fig. 1 DB system architecture.

Fig. 6 Conventional GC.
If Nvalid is large, GC
latency is over 100ms.

Fig. 10 Example of SE and FTL response in (a) conventional system and (b) proposed system.

Fig. 11 (a) SSD performance, (b) energy consumption and (c) write/erase cycles per NAND block as a function of
SSD free space during random access using Insert, Delete and Update queries. Row data size is 119B.

Fig. 3 SSD performance vs.
elapsed time. Performance
degrades in conventional
system by data fragmentation
and garbage collection (GC).

Fig. 4 Logical and physical data
structures and addresses.

Fig. 5 Write operation of
SSD (NAND flash).

Fig. 7 Concept of the proposed page-copy-less GC scheme.

Fig. 12 Effect of IAA and U2DI.

Fig. 8 Valid page location in
the emulated NAND flash.

0

500

1000

1500

2000

0 20 40 60 80 100

P
e

rf
o

rm
a

n
c

e
 (

q
u

e
ry

/s
)

SSD free space (%)

系列1

系列5

系列9

系列2

系列6

系列10

Conv.

Prop.x3.8

(a)

Insert/Delete/Update
△▲ 10%/10%/80%
□■ 30%/30%/40%
○● 50%/50%/0%

P
e

rf
o

rm
a

n
c

e
 (

q
u

e
ri

e
s

/s
)

SSD full 0

500

1000

1500

0 20 40 60 80 100P
e

rf
o

rm
a

n
c

e
 (

q
u

e
ry

/s
)

SSD free space (%)

系列9

系列6

系列10

Insert/Delete/Update
30%/30%/40%

Only IAA

Prop.

(IAA and

U2DI)

P
e

rf
o

rm
a

n
c

e
 (

q
u

e
ri

e
s

/s
)

Only U2DI

SSD full

Fig. 9 SE operations performed in LA space for
Insert, Delete and Update SQL queries in the (a)
conventional and (b) proposed scheme.

Concentrate overwrite
to the target block

…

…

Only erase is needed

NAND block number

All pages invalid

…

…Conv.

…

Valid page

…

Prop.

NAND block number

…

…

GC phaseData writing phase

Invalid
page

Block
currently writing

Random overwrite to all blocks

 No page copy penalty

Valid page remains
 Page copy is neededNext erase

block

NAND flash
page

(16KB)

LA: Logical address
LPA: Logical page address
PPA: Physical page address

NAND flash page size (16KB)

Row data size (a few 100B)

LA …

LPA 0 1 2

0B

…
0
1

255

…

256

257

511

Block0 Block1

FTL/

NAND

SE

PPA PPA

…

…

L
o

g
ic

a
l

P
h

y
s
ic

a
l

Insert

Update

row in

LPA8

Insert

(4, 0)
(5, 1)
(6, 2)

(7, 3)

Block 0 Block 1 Block 15

(8, 4)
(9, 5)

(10, 6)
(11, 7)

…

(4, 60)
(5, 61)
(-, 62)

(-, 63)

(4, 0)
(5, 1)
(6, 2)

(7, 3)

(8, 4)
(9, 5)

(10, 6)
(11, 7)

…

(4, 60)
(5, 61)
(-, 62)

(-, 63)

(4, 0)
(5, 1)
(6, 2)

(7, 3)

(8, 4)
(9, 5)

(10, 6)

(11, 7)

…

(4, 60)
(5, 61)
(6, 62)

(7, 63)

(LPA, PPA)

Query

sequence

Physical address space (FTL manages)

Next erase block

…
LPA4 LPA5 LPA6 LPA7

…
LPA8

Delete updating row in LPA8

Insert updated row in LPA6
(4, 0)
(5, 1)
(6, 2)

(7, 3)

(8, 4)
(9, 5)

(10, 6)
(11, 7)

…

(4, 60)
(5, 61)
(6, 62)

(-, 63)

Updated row (No change)

LPA4, 5, 6, 7 are informed to SE by IAA

Converted to Delete + Insert by U2DI

All pages invalidated by IAA and U2DI (no page-copy penalty, only erase needed)

…
LPA4 LPA5 LPA6 LPA7

…
LPA8

…
LPA4 LPA5 LPA6 LPA7

…
LPA8

…
LPA4 LPA5 LPA6 LPA7

…
LPA8

Logical address space (SE manages)

LPAs of next erase block

Added row

Added row

(b)

Previously inserted row

SSD controller

Old block

New block

Page buffer

NAND flash chips

Nvalid: # of
valid pages
in old block

GC latency: Nvalidx(tread+twrite)+terase

=Nvalidx1.7ms+8.5ms
=435.2ms+8.5ms (@Nvalid=256)

2.Data out/in, ECC

3.Write to
new block

4.Erase old block
1.Read valid
pages in
old block

Invalid

Block currently writing

Insert

Update

row in

LPA40

Insert

(4, 0)
(36, 1)
(12, 2)

(43, 3)

Block 0 Block 1 Block 15

(11, 4)
(40, 5)
(23, 6)

(8, 7)

…

Next erase block

(43, 60)
(-, 61)
(-, 62)

(-, 63)

(4, 0)
(36, 1)
(12, 2)

(43, 3)

(11, 4)
(40, 5)
(23, 6)

(8, 7)

…

(43, 60)
(40, 61)

(-, 62)

(-, 63)

(4, 0)
(36, 1)
(12, 2)

(43, 3)

(11, 4)
(40, 5)
(23, 6)

(8, 7)

…

(43, 60)
(40, 61)
(43, 62)

(-, 63)

Can not invalidate by Insert since LPA is full Remains valid page

(LPA, PPA)

Query

sequence

Physical address space (FTL manages)

…
LPA40 LPA41 LPA42 LPA43

…

…
LPA40 LPA41 LPA42 LPA43

…

…
LPA40 LPA41 LPA42 LPA43

…

Logical address space (SE manages)

Added row

Added row

Updated row

(a)

New block (currently writing)

4. Invalidate
old page

2. Merge old
data with
new data

Page buffer

Old page

Page buffer

1. Read old
page data

3. Write to
new page

3.
4.

Invalid

1.

2.

New data

SSD controller

SSD controller

NAND flash chip

Physical over-
write is not
allowed

FS

App

OS

SSD

FTL

NAND flash

Logical addr.
(FS bypassed)

Physical
addr.

SE

SQL server

Conv. Proposed

FTL

NAND flash

SE

SQL server

App: Application, SE: Storage engine

SQL: Structured query language

FTL: Flash translation layer (SSD controller)

Database (DB) system

E.g. of row data: ID Name Address

Co-
designed
to enhance
performance

Row data

…

0

500

1000

1500

0 1 2 3 4 5P
e

rf
o

rm
a

n
c

e
 (

q
u

e
ry

/s
)

Time (hour)

系列9

系列10

Conv.

Proposed

Degradation
by garbage
collection

Row data size: 119B
NAND flash
page size: 16KB

P
e
rf

o
rm

a
n

c
e
 (

q
u

e
ri

e
s

/s
)

Time elapsed (hour)

Fig. 2 (a) NAND flash memory array
structure. (b) Trend of number of pages per
block in NAND flash memory.

Insert

Add row next to
last inserted row

Delete

Update

SE Operation (in LA space)

…

…

LPA40 LPA41 LPA42 LPA43

Page size

Row data
size

Modified in-place

…

Gray: Used rows
White: Empty rows

Query

…

…

…

LPA40 LPA41 LPA42 LPA43

LPA40 LPA41 LPA42 LPA43

(a)

Row disabled (no FTL operation)

Insert

Delete

Update

Query

FTL informs LPAs in next
block for erase to SE

Row disabled (no FTL operation)

…

…

LPA4 LPA5 LPA6 LPA7

Updating row is deleted

Insert

Delete
…

…

Updated row is newly inserted

Update to Delete + Insert (U2DI)

Rows are added here

LPA4 LPA5 LPA6 LPA7

LPA4 LPA5 LPA6 LPA7

Insert Address Assist (IAA)

…

…

…

…

(b)

SE Operation (in LA space)

N
A

N
D

 f
la

s
h

b
lo

c
k

 n
u

m
b

e
r

Valid page Invalid page

Free (erased) page

NAND flash page number

Next erase
block

Conv.

Prop.

N
A

N
D

 f
la

s
h

b
lo

c
k
 n

u
m

b
e
r

Bit-line (BL)

Source-line (SL)

C
o

n
tr

o
l

g
a

te
 (

C
G

)

(W
o

rd
-l

in
e

)

S
e
le

c
t

g
a

te
 (S

G
)

… …

Page

Block

(a) (b)

32

64

128

256

512

0 5 101520253035

#
 o

f
p

a
g

e
s
 p

e
r

b
lo

c
k

Tech. node (nm)Tech. node (nm)

5
X

4
X

3
X

2
X

2
Y

1
X

- 131 -

