Comparison between theoretical and experimental results for energy states of two-dimensional electron gas in pseudomorphically strained InAs-HEMTs

Yui Nishio, Takahiro Tange, Naomi Hirayama, Tsutomu Iida, and Yoshifumi Takanashi
Department of Materials Science and Technology, Faculty of Industrial Science and Technology
Tokyo University of Science
6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan
Telephone +81358761717 Ext. 1805, Facsimile +81358761639 E-mail: ht0131@rs.noda.tus.ac.jp

Abstract

Comparison between theoretical and experimental results for energy states of the two-dimensional electron gas has been made for pseudomorphically strained InAs-HEMTs. Not only the threshold voltage but the transconductance of HEMTs calculated using the non-parabolic energy band model agreed fairly well with those obtained experimentally. In addition, the effect of composition of the $\mathbf{I n}_{x} \mathbf{G a}_{1-x}$ As barrier layer on energy states of 2DEG was investigated. It was found that $V_{T H}$ does not depend on the structure of the buffer layer used.

1. Introduction

In InP-based high electron mobility transistors with a pseudomorphically strained InAs channel (InAs PHEMTs), a current-gain cutoff frequency f_{T} of 688 GHz has been reported [1]. In addition, the operating characteristics of InAs PHEMTs have been analyzed experimentally for future logic applications [2].

According to Kane [3], the non-parabolicity of the conduction band should be taken into account when a semiconductor has an energy gap as small as that in InAs. Recently, we have used the energy dependent effective mass and the standard perturbation to determine the energy states of two-dimensional electron gas (2DEG) in the InAs channel of PHEMTs by solving both the Schrödinger and Poisson equations self-consistently [4]. In addition, we have clarified that the threshold voltage of PHEMTs $V_{T H}$ is given by the effective conduction band offset-energy ΔE_{C} between the barrier and channel layers [5].

The purpose of this paper is to compare between theoretical and experimental results for energy states of 2DEG and to show that our theory is effective in analyzing device characteristics of PHEMTs. In addition, the effect of composition of the $\mathrm{In}_{\mathrm{x}} \mathrm{Ga}_{1-\mathrm{x}} \mathrm{As}$ barrier layer on energy states of 2 DEG is investigated.

2. Device structure

Figure 1 shows a schematic cross section of PHEMTs assumed in the calculation. The epitaxial layers of InAs PHEMTs under calculation consist of an undoped InAlAs layer, an undoped $\mathrm{In}_{\mathrm{x}} \mathrm{Ga}_{1-\mathrm{x}} \mathrm{As} / \mathrm{InAs} / \mathrm{In}_{\mathrm{x}} \mathrm{Ga}_{1-\mathrm{x}}$ As composite channel layer (10 nm), and an InAlAs barrier layer with a Si-doping density of $2 \times 10^{12} \mathrm{~cm}^{-2}(4 \mathrm{~nm})$ [2]. The thickness
of InAs was set to be 5 nm within the critical thickness.

3. Results and discussion

The gate metal was assumed to be the same $\mathrm{Ti} / \mathrm{Pt} / \mathrm{Au}$ as used in Ref. 3, so the surface potential energy at the gate-to-source voltage $V_{G S}$ of 0 V (i.e., the Schottky barrier height) was assumed to be 0.655 eV [6]. Figure 2 shows the dependences of n_{s} on the $V_{G S}$ for InAs PHEMTs, where the curve (a) corresponds to the non-parabolic energy band case and (b) to the parabolic energy band case. The $V_{T H}$ for both cases were estimated by interpolating in such a way that $n_{s} \rightarrow 0$ in the $n_{s}-V_{G S}$ curve. The value of $V_{T H}$ was -0.10 V for the case (a) and- 0.02 V for the case (b). The change of $V_{T H}$ from cases (a) to (b) is ascribed to the effect of the non-parabolicity of conduction band for InAs [5]. There is another difference in the slope of the cases (a) and (b), i.e. the former is greater than the latter. This implies that the value of the transconductance G_{m} calculated for the parabolic energy band case is less than that calculated for the non-parabolic conduction band. Since the thickness of InAlAs layer under the gate is as thin as 4 nm , the dependence of $V_{T H}$ on the gate length, i.e. the short channel effect, is thought to be small (Fig. 3 in Ref. 3). Therefore, it is possible to compare $V_{T H}$ values obtained by the theory and the experiment. Figure 3 (b) shows the drain current $I_{D S}$ versus $V_{G S}$ for InAs PHEMTs with a gate length of 40 nm at the drain voltage $V_{D S}$ of 0.5 V obtained by Kim et al. (Fig. 4 in Ref. 3). The theoretical results for $I_{D S}$ (Fig. 3 (a)) were obtained using the following equation based on the velocity saturation model, which holds for HEMTs with a short gate length [7]:
$I_{D S}=n_{s} q v_{s} \quad[\mathrm{~A} / \mu \mathrm{m}]$,
where v_{s} is the saturation velocity of electrons and n_{s} is the sheet concentration of 2DEG. The v_{s} was estimated from the experimental data on f_{T} to be $2.53 \times 10^{7} \mathrm{~cm} / \mathrm{sec}$ by using the following relation:
$f_{T}=\frac{v_{s}}{2 \pi\left(L_{g}+\Delta L_{g}\right)}$,
where ΔL_{g} was deduced from the result obtained by Monte Carlo simulation (43 nm) [8]. The data plotted in Fig. 2 were used as n_{s}. As shown in Fig. 3, the $V_{T H}$ at a $V_{D S}$ of 0.5 V was about -0.09 V , which was obtained by extrapolating the drain current to zero. Figure 4 shows the dependence of G_{m} on $V_{G S}$, where the curve (a) corresponds to the theoretical results calculated using the non-parabolic energy band model and the curve (b) to experimental
results for InAs PHEMTs with a gate length of 40 nm at the drain voltage $V_{D S}$ of 0.5 V obtained by Kim et al. (Fig. 5 in Ref. 3). As seen from Figs. 3 and 4, not only $V_{T H}$ but G_{m} calculated using the non-parabolic energy band model agrees fairly well with those obtained experimentally. On the other hand, in the parabolic band case, neither $V_{T H}$ nor G_{m} coincides with experimental results.

The dependences of n_{s} on the $V_{G S}$ for $\mathrm{In}_{0.53} \mathrm{Ga}_{0.47} \mathrm{As} /$ InAs $/ \mathrm{In}_{0.53} \mathrm{Ga}_{0.47} \mathrm{As}$ PHEMTs (structure A) and $\mathrm{In}_{0.75} \mathrm{Ga}_{0.25} \mathrm{As} / \mathrm{InAs} / \mathrm{In}_{0.75} \mathrm{Ga}_{0.25} \mathrm{As}$ PHEMTs (structure B) were calculated and the $V_{T H}$ for both kinds of HEMTs were estimated. These results are shown in Fig. 5, where the curve (a) corresponds to the structure A and the curve (b) to the structure B. No noticeable difference between $V_{T H}$ for both structures was observed. This is a proper result because $V_{T H}$ is given by the effective conduction band offset-energy ΔE_{C} between the barrier and channel layers as we have clarified [5]. And the slope for the structure B is slightly larger than for the structure A , indicating that G_{m} for the former is slightly higher than that for the latter. This is because that 2 DEG distributes near the upper interface between InGaAs and InAs in the structure B rather than the structure A.

4. Conclusions

Not only $V_{T H}$ but G_{m} calculated using the non-parabolic energy band model agreed fairly well with those obtained experimentally. It was found that $V_{T H}$ does not depend on the structure of the buffer layer used, in other word $V_{T H}$ is given simply by the effective conduction band offset-energy ΔE_{C} between the barrier and channel layers.

References

[1] D. H. Kim, B. Brar, and J. A. del Alamo, IEEE in IEDM Tech. Dig., 11-319 (2011).
[2] D. H. Kim and J. A. del Alamo, IEEE Electron Devices 57, 1504 (2010).
[3] E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
[4] Y. Nishio, S. Yamaguchi, Y. Yamazaki, A. Watanabe, T. Tange, T. Iida, and Y. Takanashi, 31st International Conference on the Physics of Semiconductors (ICPS2012), 37.19 (2012).
[5] Y. Nishio, T. Tange, N. Hirayama, T. Iida, and Y. Takanashi submitted to pssc (2013).
[6] Larry P. Sadwick, C. W. Kim, Kin L. Tan, and Dwight C. Streit, IEEE Electron Devices Lett. 12, 11 (1991).
[7] S. M. Sze, Physics of Semiconductor Devices (John Wiley \& Sons,New York, 1981) Chap. 6.
[8] T. Takegishi, H. Watanabe, S. Hara, and H. Fujishiro, IEICE Trans. Electron. E93-C (2010).

Source	Gate	Drain
Ti/ Λu		
$\mathrm{i}-\mathrm{In}_{0.52} \mathrm{Al}_{0}{ }^{48} \mathrm{As}$		4 nm
$\mathrm{i}-\mathrm{In}_{\mathrm{x}} \mathrm{Ga}_{1-\mathrm{x}} \mathrm{As}$		2 nm
i-InAs		5 nm
i- $-\mathrm{In}_{\mathrm{x}} \mathrm{Ga}_{1-\mathrm{x}} \mathrm{As}$		3 nm
$\mathrm{i}-\mathrm{In}_{0.52} \Lambda 1_{0.48} \Lambda \mathrm{~s}$		
Scmi-insulating InP substrate		

Figure 1: Schematic cross section of pseudomorphically strained InAs HEMTs assumed in the calculation.

Figure 2: Dependence of the n_{s} on the $V_{G S}$ for InAs PHEMTs. Solid line corresponds to (a) the non-parabolic energy band case and (b) dashed line to the parabolic energy band case

Figure 3: Drain I-V characteristics of InAs PHEMTs with a gate length of 40 nm . The red curve (a) is for the theoretical result and the green curve (b) is for the experimental result.

Figure 4: Dependence of G_{m} on $V_{G S}$, where the curve (a) corresponds to the non-parabolic energy band case and the curve (b) to experimental results for InAs PHEMTs with a gate length of 40 nm .

Figure 5: Dependence of n_{s} on $V_{G S}$. The red curve (a) is for the $\mathrm{In}_{0.53} \mathrm{Ga}_{0.47} \mathrm{As} / \mathrm{InAs} / \mathrm{In}_{0.53} \mathrm{Ga}_{0.47} \mathrm{As}$ PHEMTs, and the blue curve (b) is for the $\mathrm{In}_{0.75} \mathrm{Ga}_{0.25} \mathrm{As} / \mathrm{InAs} / \mathrm{In}_{0.75} \mathrm{Ga}_{0.25}$ As PHEMTs.

