Effects of High-Temperature Annealing on Properties of Al₂O₃/InAlN Interface Formed by Atomic Layer Deposition

Takuma Nakano, Masahito Chiba, and Masamichi Akazawa

Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo 060-8628, Japan
*Phone: +81-11-706-6875 E-mail: akazawa@rciqe.hokudai.ac.jp

Abstract

Effects of high-temperature annealing on the properties of the Al₂O₃/InAlN interface formed by atomic layer deposition (ALD) are investigated. Post deposition annealing at 850 °C deteriorated the electrical property of the InAlN metal-oxide-semiconductor diode with an 18 nm-thick ALD-Al₂O₃ layer. However, the Al₂O₃/InAlN interface property was improved by two-step ALD interrupted by annealing at 850 °C right after the initial 2 nm-thick Al₂O₃ layer formation.

1. Introduction

InAlN lattice matched to GaN is one of the candidate barrier materials for high frequency and high power GaN-based high-mobility-electron transistors (HEMTs) [1]. For a high performance of HEMTs, use of a gate insulator to suppress the leakage current has been proposed [2]. Recently, a marked progress of the cut-off frequency of InAlN/GaN HEMTs has been achieved by inserting a gate insulator [3]. However, a control method of the insulator/InAlN interfaces, particularly annealing to improve the interface properties, has not been matured. Although Al₂O₃ by atomic layer deposition (ALD) is promising for a gate insulator, it should be taken into account that annealing at a high temperature causes crystallization of Al₂O₃ to deteriorate insulating properties [4]. Here, actual effects of high temperature annealing on the ALD-Al₂O₃/InAlN interface properties are investigated to find an appropriate method.

2. Sample preparation

Here, a fabrication process for a metal-oxide-semiconductor (MOS) diode illustrated in Fig. 1 is adopted in order to separate the annealing effects on the Al₂O₃/InAlN interface from those on the Al₂O₃ bulk. The process sequence is as follows. Tested MOS diodes consisted of the ALD-Al₂O₃ (18 nm)/In₀.17Al₀.83N (160 nm, \(n = 2 \times 10^{18} \text{ cm}^{-3} \)) structures. An annular Ti/Al/Ti/Au (20 nm/50 nm/20 nm/100 nm) ohmic contact was formed and annealed at 850 °C for 1 min using a 20 nm-thick SiNx cap layer for surface protection. After removing the SiNx cap layer using buffered hydrofluoric acid, a 2 nm-thick ALD-Al₂O₃ layer was formed at 350°C using H₂O and trimethylaluminum. Subsequently, the sample was annealed at 850 °C for 1 min. Then, the outer Al₂O₃ layer of 16 nm thickness was deposited by ALD again. Finally, a circular Ni/Au (20 nm/50 nm) electrode was formed on the Al₂O₃ layer at the center of the annular ohmic electrode. For comparison, MOS diodes with an Al₂O₃ layer of 18 nm thickness by conventional one-step ALD without interruption were also prepared. Post deposition annealing for these was performed prior to Ni/Au electrode formation. For XPS investigation, a 15 nm-thick InAlN layer on the GaN buffer layer was used.

3. Results and discussion

The 1 MHz capacitance-voltage (C-V) curves measured before and after post deposition annealing at 850°C for 1 min are compared in Fig. 2 for the MOS diodes fabricated by one-step ALD without interruption. After annealing the C-V characteristic was markedly deteriorated compared with that of the as-deposited sample, which indicated that post deposition annealing at a high temperature was not suitable for this structure.

In order to investigate the influence of annealing on the interface, X-ray photoelectron spectroscopy (XPS) investigation was performed on the sample with 2 nm-thick Al₂O₃ layer on InAlN. The In 4d spectra measured before and after annealing at 850 °C for 1 min are shown in Fig. 3. There was no marked evidence of intermixing at the interface. This result indicates that high-temperature annealing does not necessarily deteriorate the interface structure.

Fig 1 Fabrication process with two-step ALD.
There is the possibility that the deterioration of the electrical properties of the MOS diode was owing to the bulk of the Al$_2$O$_3$ layer. Therefore, we tried to apply the proposed interface formation method. Actually, the C-V curve measured for the two-step ALD sample showed a much improved characteristic with a large capacitance change, as shown in Fig. 2 where the ideal curve overlaps the measured one in the depletion region. This result indicates that the reduction of the interface states while maintaining the high dielectric quality was achieved by adopting the two-step ALD method.

The D_{it} distribution was evaluated for all samples by the high-frequency method, as shown in Fig. 4. The D_{it} evaluation is limited to near the conduction band because the time constant of the interface states becomes much longer than the practical measurement time deep inside the band gap. Although high-temperature annealing led to an increase in D_{it} for the sample through one-step ALD, D_{it} was markedly reduced for the two-step ALD sample. Therefore, the interface properties are improved by high-temperature annealing when the deterioration of the Al$_2$O$_3$ insulator bulk properties, probably owing to crystallization [4], is suppressed.

4. Conclusions

Although the electrical properties of the MOS diode with the single ALD-Al$_2$O$_3$ layer was deteriorated, XPS results showed that annealing at 850 °C was not harmful for the ALD-Al$_2$O$_3$/InAlN interface. Thus, the deterioration of the diode properties was possibly caused by the annealed Al$_2$O$_3$ insulator bulk. Actually, an improvement of the Al$_2$O$_3$/InAlN interface properties was achieved by minimizing annealed layer thickness in two-step ALD.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 24560022. The authors are thankful to Professors T. Hashizume and E. Sano for their fruitful discussions.

References