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Abstract 

Single-electron counting statistics, which provide 

deep insight in correlated electron transport, can also 

be influenced by measurement apparatus such as finite 

frequency bandwidth of a charge detector. We have 

developed an analysis technique to obtain actual tun-

neling rates through a quantum dot when the detector 

has a limited bandwidth. The correction performance is 

confirmed by simulating the filtering effect on sin-

gle-electron counting scheme, which is effective even 

when tunneling rates are close to the upper edge of the 

bandwidth.  

 

1. Introduction 

Charge detection of a quantum dot (QD) by using a 

quantum point contact (QPC) is widely used to study single 

electron dynamics in nanostructures [1]. Every single elec-

tron tunneling events can be detected in real time, and the 

statistical analysis of the time-domain data allows us to 

evaluate the followings; tunneling rates through the barriers, 

correlated electron tunneling with non-Poissonian charac-

teristics, and spin-dependent tunneling with spin-charge 

conversions, for example[2-5]. In practice the QPC current 

has to be analyzed with a limited frequency bandwidth to 

eliminate unwanted noise. However, this bandwidth inevi-

tably removes some tunneling events, and thus the obtained 

statistics or tunneling rates of the measured events can be 

different from those of the true events. In this work, we 

have analytically investigated the statistics of tunneling 

events through a QD with a single energy state when the 

detector has a limited bandwidth, and derived a simple cor-

rection scheme to estimate the actual tunneling rates. 

 

2. Detectable statistics with finite bandwidth 

We consider a single QD coupled to a QPC detector as 

shown in Fig. 1(a). With a large bias voltage VQD, sin-

gle-electron transport is supposed to be unidirectional from 

the left to the right with tunneling rates in and out. As 

shown in Fig. 1(b), the QPC detector current ID(t) fluctuates 

between high and low levels corresponding to empty and 

occupied states in the QD. This current is converted into a 

voltage VD(t) with an I-V converter and appropriate filters. 

Here we assume that the overall response function is ex-

pressed as a standard first-order low-pass filter character-

ized by a time constant f. The voltage waveform VD(t) 

would be somewhat distorted like in Fig. 1(c). This wave-

form VD(t) is digitized into two values with a threshold 

voltage Vth. Typically Vth is set at the middle of the two 

voltages, VD,H and VD,L, respectively for the empty and oc-

cupied states, or can be hysteretic depending on the previ-

ous state. Typical response time th from an transition event 

to reaching this threshold is given by th = fln with a 

threshold factor  = Vth/(VD,H  VD,L), which is typically  = 

1/2. The digitized data, shown in Fig. 1(d), is regarded as 

the dot charge Qd(t). 

However, as one can see in the comparison of Figs. 1(b) 

and 1(d), the obtained dwell times T’H and T’L are not iden-

tical to the true dwell times TH and TL. Hereafter, primed 

variables are used for quantities with finite bandwidth. The 

first dwell time T’H,1 in the figure is slightly different from 

the true one TH,1, but this difference is negligibly small 

(fln2 in the worst case). Serious errors come from unde-

tected events like the second dwell time TH,2 in Fig. 1(b), 

which is missing in Fig. 1(d). Importantly, the original two 

low-level dwell times TL,1 and TL,2 are misinterpreted as a 

single dwell time T’L,1, which can alter the distribution of 

the dwell time. In the following, we show how the finite 

bandwidth influences the measurable statistics, and provide 

a simple way to correct the errors.  

We consider the incoming and outgoing tunneling pro-

cess to be Poisson. Namely, the true dwell time TH/L is dis-

tributed with the probability PH/L(TH/L) = H/L H/L
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which has mean mH/L and standard deviation H/L identical 

to the tunneling time constant H/L, i.e. mH/L =H/L =H/L. 

The first-order low-pass filter removes events with short 

dwell time less than th. Corresponding undetected proba-

bility is expressed as (1 – H/L) with H/L = th H/L/
e

  . First we 

consider the case where undetected events exist only for the 

high level; finite H but L = 0 corresponding to L >> H ~ 

f. When the measurement gives a dwell time T’L, there 

might be n hidden undetected events with short dwell time 

TH,i (i = 1… n) in the period T’L. Here, actual dwell time 

TL,i (i = 0… n) are constrained with the observation (T’L 

= ,
0
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L i
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T
 ). The probability of having n hidden events is 

 
Fig. 1. (a) Schematic diagram of charge detection measurement of 

single-electron tunneling events though a quantum dot. (b) Typical 

detector QPC current ID(t) with dwell times TH,i and TL,i. (c) Amplified 
voltage VD(t) and the threshold voltage Vth. (d) Digitized data Qd(t) 

with measured dwell times T’H,i and T’L,i. 
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p(n) = (1 – H)
n
H. Corresponding distribution function of 

T’L composed on (n+1) low-level dwell times T’L,i reads  
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where dwell times of the hidden events, TH,i, are ignored. 

The overall distribution function is found to be 
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It has the same form as the original PL(TL) but with a longer 

characteristic time 'L =L/H by the factor H (< 1). The 

above formula can be used to obtain the true tunneling rate 

out = L
1

 = ('LH)
1

 from the measured 'L. 

   In practice, undetected errors can occur in both levels, 

which mak the microscopic analysis difficult. Nevertheless, 

we apply the above formula for both levels for simplicity. 

Then measured time constants 'H and'L would be given 

by 

 th H th L/ /
L L H H' , 'e e

      
  .                 (3) 

Conversely, one can obtain true tunneling rates in = H
1

 

and out = L
1

 by solving the non-linear coupled equations 

Eq. 3 from the measurement outcome 'H and'L.  

 

3. Numerical simulations of stochastic process 

   To demonstrate the validity of the above analytical es-

timate, we performed numerical simulation of Poisson ran-

dom processes. Random telegraph signal generated with the 

time constants H and L is distorted by the first-order filter 

with a time constant f. The distorted waveform VD(t) is 

digitized into two values with the hysteretic threshold ( = 

1/4). Distributions of the dwell times T’H and T’L are evalu-

ated by making their histograms. 

Figure 2 shows typical results for asymmetric tunneling 

time-constants H = 10 and L= 100 in an arbitrary unit. As 

seen in VD(t) traces in the top panels, the signal is distorted 

in (b) for f = 5 and (c) for f = 10 as compared to the 

no-filtering case in (a) for f = 0. Corresponding histograms 

for T’H and T’L are shown respectively in the middle and 

bottom panels. They are deviated from the true distribution 

functions (blue lines labeled by H and L). Events for dwell 

time less than f are missing, as seen in the middle panel of 

Fig. 2(c). Histograms of T’L shows a completely different 

slope 'L, four times as large as L, in the bottom panel. It 

should be noted that they are well reproduced by the ana-

lytical formula P’L(T’L) multiplied by a reasonable factor 

(red lines labeled by 'H and 'L).  

   Figure 3 shows the results for symmetric case of H = 

L= 10, where VD(t) traces and histograms T’H are shown. 

Undetected events at T’H < th and large time-constant 'H > 

H are clearly seen in Fig. 3(c). Importantly, the distribution 

is well reproduced with the solution of Eq. (3). This ensures 

that Eq. 3 can be used even when tunneling events for both 

high and low levels are partially undetectable (H, L ~ f). 

The top trace in Fig. 3(c) represents the waveform at H = 

L = f), which almost deviates from two-level telegraph 

signal. The correction with Eq. (3) is effective to obtain true 

time constants (tunneling rates) even in such situation. 

 

4. Summary 

   Practical and useful scheme to obtain true tunneling 

rates is provided for a single-electron counting statistics 

with a finite frequency bandwidth. 
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Fig. 3. Numerical simulation of counting statistics for symmetric tun-

neling barriers (H = L= 10). (a) No filtering, and (b) filtering with f = 

5, and (c) with f = 10.  

 
Fig. 2. Numerical simulation of counting statistics for asymmetric 

tunneling barriers (H = 10 and L= 100). All time scales are in an 

arbitrary unit. (a) No filtering and (b) filtering with f = 5, and (c) with 

f = 10. Filtered waveforms (solid lines) and hysteretic threshold levels 

(dashed lines) are shown in the top panels. Histograms for high and 

low levels are shown in the middle and bottom panels. The distribu-

tions agree well with the analytical solutions (red lines).  
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