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Abstract

A VCO using programmable analog memory (PAM)
as a voltage-controlled element is developed as a pro-
grammable analog device including a c-axis aligned
crystalline In-Ga-Zn oxide FET. The oscillation fre-
guency of the VCO is controlled by analog voltage data
(AVD) stored at the PAM. The frequency can change
over six orders of magnitude with a driving voltage of
1.5V and AVD ranging from 0.7 to 2.5 V. Thisis real-
ized by switching among PAMs that keep their values
with infrequent AVD refresh. A low-power PLL using
the VCO isalso proposed.
1. Introduction

A c-axis aligned crystalline In-Ga-Zn oxide
(CAAC-IGZO0), a crystalline oxide semiconductor (QS)
can be used to achieve a FET exhibiting ultra-ldfastate
current [1]. LSI [2}7] as well as display [8] applications
utilizing the CAAC-IGZO FET have been developedeyh
include field-programmable gate arrays (FPGAS),it@av
CAAC-IGZO FET-based nonvolatile configuration
memory [5}H7], that employ a multi-context architecture
to realize instant configuration switching and rieguex-
tremely low power for data retention.

The CAAC-IGZO FET-based configuration memory in
these FPGAs works as memory holding binary digitdh;
it also has the potential to work as nonvolatilegpamma-
ble analog memory (PAM) that can keep the values.

CAAC-IGZO FET as a transistor MW, the node SN is re
garded as floating when the transistor MW is dffig, the
AVD can be kept for a long time.

Multiple VCEs have the following advantage: by pro-
gramming different AVD in the VCEs and changingesel
tion of VCEs, the oscillation frequency of the V@@an be
switched immediately in accordance with AVD pro-
grammed in the selected VCE.

The VCO has been fabricated with a hybrid process i
volving a 1.0um CAAC-IGZO FET and a 0.pm CMOS
FET [2}[7]. Fig. 2 shows the static characteristics of a
CAAC-IGZO FET. The off-state current of this FETes-
tremely low; an off-state current of a CAAC-IGZO FE
with a channel length of 3im is approximately 5E-23
A/um at 85°C [9].

3. Measurements and Results
3-1. Oscillation Frequency vSp¥ra

Fig. 3 shows the relationship between oscillatios f
quency and AVD programmed in each VCE; the relation
ship is measured on a test element group with a W&&
ing four VCEs. The driving voltag¥ro of the inverter is
1.0, 1.5, or 2.5 V. The driving voltag&, of a circuit se-
lecting the gate of the transistor MW is 2.5 V. Hazkgate
voltageVpg of the transistor MW is —=9.0 V. The write time
is 500us.

The results of selecting only VCE[1] show the VCO
oscillation frequency depends on the level\gfa. For

As an example application of a programmable analogexample, atVgo of 1.5 V, the oscillation frequencies are

device, this paper reports on a VCO using nonvel&AM
with a CAAC-IGZO FET as a voltage-controlled eletnen
(VCE). The VCO outputs a signal with intended datibn
frequency in accordance with analog voltage dateO{A
stored at PAM and is capable of switching frequesict
high speed and obtaining stable oscillation in artstime
after power-on.
2. Design and Fabrication

Fig. 1 is a circuit diagram of the fabricated VCihe
VCO is a ring oscillator composed of 101-stage itess
and voltage-controlled switches (VCS) between theeiit-
ers. Each VCS consists of multiple VCEs (VCEJi])CK[i]
stores intended AVD\pata) at a node SN, and the channel
resistance of a transistor MG is controlled basadtle
AVD when the AVD is well controlled by a circuit feet-
ting voltage. In other words, the VCS resistandaaised on
the AVD programmed in a selected VCE to enablerobnt

7.20 Hz and 7.83 MHz witNpata 0f 0.7 V and 2.5V, re-
spectively. In other words, the VCO changes thdlaton
frequency over six orders of magnitude withy ranging
from 0.7 to 2.5 V. Note that inverter delay may duwmi-
nant in a region with highpara; therefore, the oscillation
frequency does not depend significantly \@ghra. On the
other hand, in a region with loWpata, Specifically 1.3 V
or lower, oscillation frequency depends stronglWegra.

With regard to oscillation frequency dependenc&/gq#
with Vro of 1.0 and 2.5 V, the highest oscillation frequen-
cies are 2.30 and 9.09 MHz, respectively, and tlaim
mum gradients of the log-scale oscillation frequendth
respect toVpara are 0.47 and 1.08 decades per 100 mV,
respectively. AccordinglyVgo may be changed to meet
intended applications of the VCO; for example, ghhi
driving voltage is used to obtain a wide frequenagge,
and a low driving voltage is used to control thegfrency at

of the VCO oscillation frequency. With the use of a shortintervals.
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3-2. Oscillation Frequency Retention

Fig. 4 shows frequency retention characteristics,, i
oscillation frequency spectra of the VCO and thangfe
with time whenVpara is 1.5 or 2.5 V. In the initial state,
power consumption of the VCO wit¥para Of 2.5 and 1.5
V is 795 and 336uW, respectively, and figures of merit
[10] are estimated at —127.7 and —-134.3 dBc/Hz.

With Vpara 0f 2.5 V, the central oscillation frequency is

decreased by 192in 90 min. In contrast, witWpara Of 1.5
V, the central oscillation frequency is attenudtgdt.0% in
5 min. This probably occurs because the rate otase of
the oscillation frequency t&Wpara is higher atVpara of
approximately 1.5 V than when it is approximatel$ ¥,
and thus a small fluctuation of AVD programmed M@E
greatly influences the oscillation frequency.

The results demonstrate that the oscillation fraquef

power consumption. It has been reported that ihla dp-
erating at approximately 20 GHz and 1.5 V, circuitser
than the VCO account for 80 of the total current con-
sumption [11].

In contrast, in a PLL including the proposed VC®; c
cuits excluding the VCO can be powered off in pdsio
other than an infrequent refresh period requireshéintain
the oscillation frequency; thus, power consumptian be
drastically reduced. Further, in rebooting the PIAVYD
corresponding to the previous oscillation frequenay be
held, which should result in high-speed rebooting.
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Fig. 1 Circuit diagram of proposed VCO including CAAGZO
FET with channel widttW =4 um and Si FET withW= 16 um
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Fig. 4 Data retention characteristics with diffaraiyD
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Fig. 5 Output waveform from
power-off to rebootg = 15 min
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Fig. 6 Output waveform in switch-

ing selected VCE; Yo =15V
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