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Abstract 

We review characteristics of CoFeB-MgO magnetic 

tunnel junction with perpendicular easy axis (p-MTJ) at 

a reduced dimensions down to 1X nm. CoFeB-MgO 

p-MTJ with double-interface shows higher thermal sta-

bility down to 1X nm than that with single-interface. 

Intrinsic critical current of 24 A and thermal stability 

factor of 58 are achieved at a junction diameter of 20 

nm in double CoFeB-MgO interface structure. 

 

1. Introduction 

CoFeB-MgO based magnetic tunnel junction with per-

pendicular easy axis (p-MTJ) is attracting great attention as 

a building block in spintronics based very large scale inte-

grated circuits1 and spin-transfer-torque magnetoresistive 

random access memory (STT-MRAM), because high tun-

nel magnetoresistance (TMR) ratio, a relatively high ther-

mal stability factor , and low intrinsic critical current of 

49 A were demonstrated at a junction diameter (D) of 40 

nm.2 A fast switching3 and low write error rate4 by STT 

were also reported in CoFeB-MgO p-MTJs. These features 

made it possible to demonstrate several types of spintronics 

based VLSIs5-8 and STT-MRAMs9-11 by using CoFeB-MgO 

p-MTJs. For further development of the spintronics based 

VLSIs and STT-MRAMs, it is required to miniaturize MTJ 

size while maintaining high performances. In this study, we 

report characteristics of the p-MTJs with double 

CoFeB-MgO interface structure and single CoFeB-MgO 

interface structure scaling down to D of 1X nm. 

 

2. Experimental procedure 

Stack structures shown in Fig. 1 are deposited on ther-

mally oxidized Si substrate by dc/rf magnetron sputtering. 

The stacks are processed into circular p-MTJs by electron 

beam lithography, reactive ion etching, and Ar ion milling. 

The fabricated MTJs are annealed at 300oC for 1 hour in 

vacuum under perpendicular magnetic field of 0.4 T. Re-

sistance and area product (RA) is determined by fitting a 

linear function to the relationship between conductance at 

parallel state and junction area measured by scanning elec-

tron microscope for the MTJs with nominal D of 30 – 80 

nm. D of each MTJ is determined by the RA value and R of 

each MTJ. 
 

3. Results 

Figure 2 shows TMR ratio for the p-MTJs with double- 

and single-interface structure as a function of D. Both 

structures show virtually the same TMR ratio in the studied 

D range. However, minor resistance versus magnetic field 

curves (R-H curves) with single-interface structure show no 

hysteresis at D of 1X nm whereas that with dou-

ble-interface structure shows square shape with bi-stable 

state at H = 0 (not shown).12 

Switching probability as a function of applied pulse mag-

netic field amplitude with duration of 1 s is measured to 

evaluate .13  for both structures is plotted with respect to 

D in Fig. 3. Higher  is observed in double-interface struc-

ture than single-interface structure, which is consistent with 

previous study.13 Double-interface structure shows almost 

constant  down to D of 30 nm, below which it starts to 

decreases. The results indicate that nucleation size of dou-

ble-interface structure is ~ 30 nm. Note that the D depend-

ence of  can be explained by magnetic properties of blan-

ket film with correction of demagnetization factor. 

Finally, IC0 is evaluated for double-interface structure with 

D of 20 nm. To evaluate IC0, we measure switching proba-

bility with respect to pulse current amplitude with duration 

of 0.1 s as shown in Fig. 4.13 From a fit of theoretical equa-

tion to the results,14 IC0
P(AP) are determined to be 27 A and 

-21 A where superscripts of IC0 denotes magnetization 

configuration before switching. 

Our present result indicates that  of 58, and average |IC0| 

of 24 A can be achieved by using double-interface struc-

ture at D of 20 nm. 

 

4. Conclusions 
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We investigate junction size dependence of properties of 

magnetic tunnel junctions with double- and single-interface 

structure scaling down to 1X nm. Double-interface struc-

ture shows higher thermal stability factor than sin-

gle-interface structure. At a junction diameter of 20 nm, 

thermal stability factor of 58 and average absolute intrinsic 

critical current of 24 A are achieved in double-interface 

structure. 
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Fig. 1 Schematic of stack structures employed in this study. (a) 

double CoFeB-MgO interface structure, (b) single CoFeB-MgO 

interface structure. 
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Fig. 2 Tunnel magnetoresistance ratio of magnetic tunnel junc-

tions with double- and single-interface structure as a function of 

junction diameter.  
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Fig. 3 Thermal stability factor of double- and single-interface 

structure as a function of junction diameter..  
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Fig. 4 Switching probability as a function of applied pulse current 

amplitude with duration of 0.1 s for double-interface structure 

with junction diameter of 20 nm.  
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