Epitaxial Growth, Doping, and Electron Transport of the Semiconducting Oxides In₂O₃, Ga₂O₃, and SnO₂

Oliver Bierwagen^{1,2}, Mark E. White², Min-Ying Tsai², James S. Speck², Takahiro Nagata³, Natalie Preissler¹, Patrick Vogt¹

 ¹ Paul-Drude-Inst. für Festkörperelektronik Hausvogteiplatz 5—7 10117 Berlin, Germany
Phone: +49-30-20377-491 E-mail: <u>bierwagen@pdi-berlin.de</u>
² Univ. of California Santa Barbara, CA 93106, USA
³ National Inst. for Materials Sci.
1—1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Abstract

The growth of high-quality, single-crystalline SnO₂, In₂O₃, and Ga₂O₃ films by plasma assisted molecular beam epitaxy is presented. The growth-related issues faceting, nucleation, and sub-oxide formation are discussed. The resistivity of SnO₂ and In₂O₃ was systematically varied from semi-insulating to highly conductive behavior by donor and (deep)acceptor doping. Realization of *p*-type conductivity seems to be hard or impossible. The influence of the surface electron accumulation layer on conductivity, its control, and its impact on contacts will be described. With the example of In₂O₃ the influence of intrinsic defects on transport properties will be demonstrated.

1. Introduction

Semiconducting oxides are playing a growing role as active device material in (opto)electronic devices. Application in transparent electronics, power electronics, or photo-detectors requires a semiconductor-like material quality in contrast the low material quality sufficient for the conventional transparent contact applications of these oxides.

This study investigates the growth of high-quality semiconducting oxide layers, their conductivity and its control, and their contact and transport properties relevant for device applications.

2. Experiment

Plasma assisted molecular beam epitaxy (PAMBE) was used to grow SnO_2 , In_2O_3 , and Ga_2O_3 layers with high crystal quality and purity, and with well-defined transport properties by systematic donor and (deep) acceptor doping [1]. Resistivity, Hall, and Seebeck coefficient measurements were used to investigate the transport properties of the grown films. Annealing in different atmospheres was used to alter the (compensating) intrinsic defect concentration in In_2O_3 . Current-voltage measurements with different contact metals were used to investigate contact properties, and XPS measurements identified the presence/absence of surface accumulation layers. Surface treatments with an oxygen plasma helped depleting the surface accumulation.

3. Results and discussion

3.1 Growth

Due to the absence of native substrates, growth was performed by heteroepitaxy on foreign subtrates, i.e. r-plane Al_2O_3 for single crystalline rutile $SnO_2(101)$ and $ZrO_2:Y(001)$ [YSZ(001)] for single crystalline cubic $In_2O_3(001)$. Ga_2O_3 was grown on c-plane Al_2O_3 (with rotational domains) and on single crystalline on beta- $Ga_2O_3(100)$. The recent availability of native oxide substrates for <u>all</u> semiconducting oxides investigated in this work will lead to a further improvement in crystal quality.

The formation and sublimation of volatile, parasitic suboxides for SnO_2 [2] and Ga_2O_3 [3] results in a decreasing growth rate in the metal-rich growth regime.

For In_2O_3 , the anisotropy of the surface free energy leads to the preferential formation of {111}-facetted surfaces for the growth of (001)-oriented In_2O_3 (Fig.1, top), whereas (111)-oriented In_2O_3 formed smooth surfaces. Metal-rich growth conditions were able to lower the In_2O_3 (001) surface free energy enabling the growth of smooth, unfacetted In_2O_3 (001) layers (Fig.1, bottom) [4].

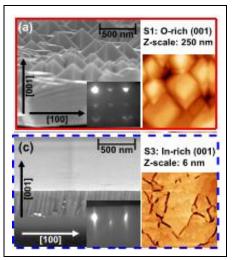
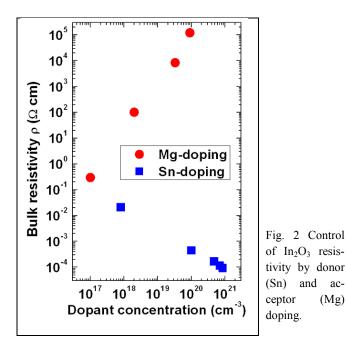


Fig. 1 Morphology of In_2O_3 films grown on YSZ(001) under oxygen-rich conditions (top) and inium-rich conditions (bottom).

In₂O₃ grows in a Volmer-Weber growth mode on YSZ(001), resulting in suppressed nucleation on the substrate and formation of micron-sized islands. Reduced substrate temperature or increased oxygen flux helped enhancing the nucleation to obtain continuous films by fast coalescence of densely packed nuclei [5]. Depending on application, suppressed wetting can be used to produce oxide islands, faceting can help defining the surface properties (e.g. for chemical sensors), and enhanced nucleation and prevented faceting helps to obtain smooth, continuous films that are required for most technological applications.

Systematic doping was studied for SnO_2 by the donor Sb [6] and the (deep)acceptors In [7] and Ga [8], and for In_2O_3 by the donor Sn [9] and the (deep)acceptor Mg [10]. Doping limits were identified by the formation of secondary crystalline phases [1, 9, 10], and Sn-incorporation into In₂O₃ was inhibited at high Sn-concentrations --- likely due to the preferential formation of parasitic Sn-suboxides [9]. High Sn-doping prevented the {111} faceting and enhanced the nucleation on YSZ [9].


3.2 Electron transport in SnO₂ and In₂O₃

Similar to most *n*-type transparent semiconducting oxides, SnO₂ and In₂O₃ are *n*-type conductive even in the absence of intentional donors --- they are unintentionally doped (UID). Our UID SnO₂ [6] and In₂O₃ [11] films showed electron concentrations due to shallow donors on the order of 10^{17} cm⁻³ at electron mobilities of ~100 and ~200 cm²/Vs, respectively.

A surface electron accumulation layer was present in both oxides [13,14], which enhanced the formation of ohmic contacts [12] but prevented the formation of Schottky contacts [12—15]. A surface oxygen plasma treatment was able to deplete the accumulation [13, 14] and enable formation of Schottky contacts [12, 15]. Unlike in e.g. InN, the conductance contribution to the UID conductivity was negligible in both oxides [8, 14].

The resistivity of both oxides could be varied by doping over nine orders of magnitude from the highly conductive to the semi-insulating regime (Fig.2). Systematic Sb-doping of SnO₂ was performed for concentrations from 10^{18} to $2.6 \times 10^{20} \text{cm}^{-3}$ with high doping efficiency achieving a TCO-like conductivity [6] whereas acceptor doping with In and Ga allowed to make the SnO₂ semi-insulating [7,8] but not *p*-type conductive. At acceptor concentrations in excess of ~ 10^{20}cm^{-3} the SnO₂ *n*-type conductivity of SnO₂ increased again.

Systematic donor doping of In_2O_3 with Sn allowed to achieve electron concentrations of $>10^{21}$ cm⁻³ and a resistivity of 10^{-4} Ohm cm [9]. Doping by Mg allowed to achieve semi-insulating In_2O_3 but no *p*-type conductivity. The conductivity of In_2O_3 was strongly dependent on annealings in oxygen or vacuum, indicating that the native point defects oxygen vacancies and oxygen interstitials to play a major role as UID or compensating donors and compensating acceptors, respectively. The Seebeck coefficient and mobility of In_2O_3 as a function of electron concentration was measured and modeled [16]. Combined Hall and Seebeck measurements were able to prove the bulk character of our UID donors as opposed to surface donors.

References

- O. Bierwagen *et al.* "Chapter 15 MBE of transparent semiconducting oxides" in "Molecular Beam Epitaxy" (2013) Elsevier Oxford.
- [2] M.Y. Tsai et al., J. Appl. Phys. 106 (2009) 024911.
- [3] M.Y. Tsai et al., J. Vac. Sci. Technol. A 28 (2010) 354.
- [4] O. Bierwagen et al., Appl. Phys. Lett. 95 (2009) 262105.
- [5] O.Bierwagen and J.S. Speck, J. Appl. Phys. 107 (2010) 113519.
- [6] M. White et al, J. Appl. Phys. 106 (2009) 093704.
- [7] M. White et al, Appl. Phys. Express 3 (2010) 051101.
- [8] O. Bierwagen et al., J. Mater. Res. 27 (2012) 2232.
- [9] O. Bierwagen and J.S. Speck, Phys. Status Solidi A 211 (2014) 48.
- [10] O. Bierwagen and J.S. Speck, Appl. Phys. Lett. 101 (2012) 102107.
- [11] O. Bierwagen and J.S. Speck, Appl. Phys. Lett. 97 (2010) 072103.
- [12] O. Bierwagen et al., Appl. Phys. Express 2 (2009) 106502.
- [13] T. Nagata et al. J. Appl. Phys. 107 (2010) 033707.
- [14] O. Bierwagen et al., Appl. Phys. Lett. 98 (2011) 172101.
- [15] H. von Wenckstern et al., APL Materials 2 (2014) 046104.
- [16] N. Preissler et al., Phys. Rev. B 88 (2013) 085305.