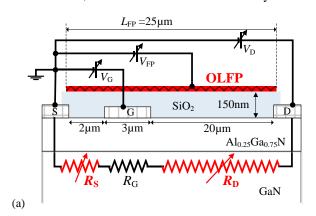
# Novel Overlaid Field-Plate for Improvement of Drain *I-V* Characteristics of AlGaN/GaN HEMTs

Suguru Mase, Takashi Egawa, and Akio Wakejima

Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan Phone: +81-52-732-5151, E-mail: cju16583@stn.nitech.ac.jp

#### **Abstract**

We propose a novel structure of an AlGaN/GaN HEMT with an overlaid field plate (OLFP) which can be applied bias independently. The OLFP-HEMT demonstrated increase of a drain current associated with reduction of an on-resistance under positive OLFP biasing conditions. This indicates that the OLFP enables intentional increase of carrier density in both a source-to-gate and a gate-to-drain region, resulting in improvement of drain *I-V* characteristics.


### 1. Introduction

A Field Plate (FP) structure is widely used for reduction of current collapse which is a critical problem of AlGaN/GaN HEMTs [1, 2]. Generally, the FP is on an insulator between a gate and a drain electrode. Thus the FP reduces drain resistance (*R*<sub>D</sub>) increase which is caused by a trapping effect. Recently, effects of the FP have been deeply investigated by controlling an FP bias independently to other olectrodes [3]. However, the bias-controllable FP has been only on a gate-to-drain region.

In this paper, we propose a novel overlaid filed plate (OLFP) structure in which the bias-controllable FP is located over whole a source-to-drain region. Not only reduction of the  $R_{\rm ON}$  but also increase of the  $I_{\rm DMAX}$  has been obtained by reducing both the  $R_{\rm D}$  and the source-resistance ( $R_{\rm S}$ )

# 2. Concept of OLFP and device structures

The OLFP, which is isolated from any other



electrodes electrically and structurally, is located over a whole source-to-drain region on an insulator film (Fig. 1(a)). Therefore, an intentional modulation of two-dimensional electron gas concentration between a source-to-gate and a gate-to-drain region is enabled by independently bias-applying to the OLFP. For example, when a FP voltage ( $V_{\rm FP}$ ) is more than a threshold voltage of a MIS structure, more electrons can be accumulated at the hetero-interface, so that both a source and a drain resistance can be reduced.

In a fabricated structure, a 150-nm-thick  $SiO_2$  film is used for the insulator. A source-to-gate, a gate, and a gate-to-drain length are 2, 3, and 20  $\mu$ m respectively (See Fig. 1(a)). For a reference, HEMTs with an independent FP (IFP) only on the gate-to-drain region with several FP lengths (Fig.1 (b)) ware also fabricated. As same as the OLFP, the IFP can be independently biased.

## 3. Results and Discussion

The OLFP-HEMT demonstrated a maximum drain current ( $I_{\rm DMAX}$ ) of 184 mA/mm at  $V_{\rm G}$  = +1 V and  $V_{\rm D}$  = +10 V, an  $R_{\rm ON}$  of 25  $\Omega$ ·mm, and a threshold voltage ( $V_{\rm TH}$ ) of -1.18 V with the OLFP floating (Fig. 2).

The  $R_{\rm ON}$  and the  $I_{\rm DMAX}$  of the OLFP-HEMT ware compared with IFP-HEMTs with several FP lengths ( $L_{\rm FP}$ ) at a constant  $V_{\rm FP}$  of +10 V (Figs. 3(a) and 3(b)). Here, the device with an  $L_{\rm FP}$  of 25  $\mu$ m is the OLFP-HEMT structure and those with an  $L_{\rm FP}$  from 1.5 to 16  $\mu$ m are IFP-HEMTs ones.

The  $R_{\rm ON}$  decreases with increase of the  $L_{\rm FP}$  (Fig. 3(a)). On the other hand, the  $I_{\rm DMAX}$  for the IFP-HEMT is

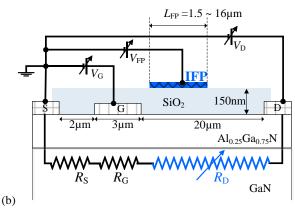



Fig. 1 Schematic cross sections of AlGaN/GaN HEMTs (a) with a novel overlaid FP (OLFP) and (b) with an independent FP (IFP).

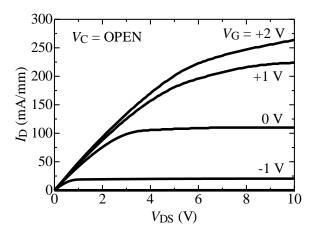



Fig. 2 Drain I-V characteristics of the OLFP-HEMT measured under an open V-FP condition

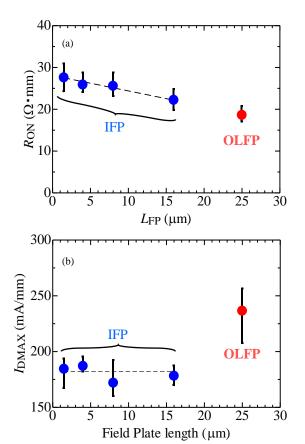



Fig. 3  $L_{FP}$  dependence of (a)  $R_{ON}$  and (b)  $I_{DMAX}$  at  $V_G=1$  V and  $V_D=5$  V ( $L_{FP}$  from 1.5 to 16  $\mu$ m: IFP and  $L_{FP}=25$   $\mu$ m: OLFP)

constant independently of the  $L_{\rm FP}$ , and the  $I_{\rm DMAX}$  of the OLFP-HEMT was 20% more than that of the IFP-FET (Fig. 3(b)). This difference of dependences between the  $R_{\rm ON}$  and the  $I_{\rm DMAX}$  is reasonable to postulate as follows. In the case of the OLFP-HEMT, decrease of the  $R_{\rm S}$  as well as the  $R_{\rm D}$  results in increase of the  $I_{\rm DMAX}$ , and reduction of the  $R_{\rm ON}$ . However, in the case of IFP, only

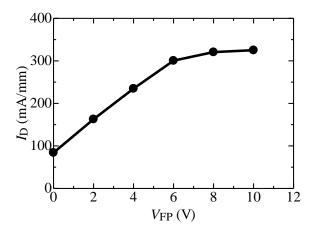



Fig. 4  $V_{\rm FP}$  dependence of  $I_{\rm D}$  at  $V_{\rm G} = +2$  V,  $V_{\rm D} = +10$  V (saturation region).

the  $R_{\rm D}$  decreases with increase of the  $L_{\rm FP}$ , so that the  $I_{\rm DMAX}$  is constant.

To investigate how much the drain current ( $I_{\rm D}$ ) possibly increases at the maximum using the OLFP, we evaluated  $V_{\rm FP}$  dependence on the  $I_{\rm D}$  (Fig. 4). In measurements, the  $I_{\rm D}$  was measured under  $V_{\rm D}=10$  V and  $V_{\rm G}=2$  V while the  $V_{\rm FP}$  was from 0 to 10 V. The  $I_{\rm D}$  increases with increase of the  $V_{\rm FP}$  from 0 to 6 V, and then is almost saturated at the  $V_{\rm FP}$  more than 6 V. It is noted that the  $I_{\rm D}$  at the  $V_{\rm FP}$  of 10 V is three times more than the  $I_{\rm D}$  at a  $V_{\rm FP}$  of 0 V. In addition, saturation of the  $I_{\rm D}$  may indicate the  $R_{\rm S}$  could not be reduced any more since a two-dimensional electron gas concentration at the source-to-gate region reached the maximum determined by the AlGaN/GaN heterostructure.

## 4. Conclusion

 $R_{\rm ON}$  reduction and  $I_{\rm D}$  increase of the AlGaN/GaN HEMT have been experimentally realized with a novel overlaid field plate (OLFP), which are owing to the reduction of the  $R_{\rm S}$  as well as the  $R_{\rm D}$  by applying higher positive voltage to the OLFP than a threshold voltage of a MIS structure at the OLFP. Although we applied the OLFP structure to a normally-on HEMT in this paper, it can be applicable even to a normally-off HEMT.

# References

[1]Jungwoo Joh, et al. IEEE Electron Device Lett. **29** (2008) 665-667

[2]Huolin Huang, et al. 2014 IEEE transactions on power electronics, **29** (2014) 2164-2173

[3]Guohao Yu, et al., 2013 IEEE Electron Device Lett. **34**, 2013 217-219