Reduction of Parasitic Resistance in Ge *n*MOSFETs with NiGe/ n^+ Ge Junctions by Two-step Phosphorus Ion Implantation

Masahiro Koike, Yuuichi Kamimuta, and Tsutomu Tezuka

Green Nanoelectronics Center (GNC), National Institute of Advanced Industrial Science and Technology (AIST) Present address: Corporate R&D Center, Toshiba Corporation, I, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan Phone: +81-44-549-2314 Fax: +81-44-520-1257 m-koike@mail.rdc.toshiba.co.jp m-koike@mail.rdc.toshiba.co.jp

Abstract

Two-step P-ion implantation (P-I/I) was investigated as a means to reduce contact resistance (R_c) at metal/ n^+ Ge junctions. It was clarified that R_c was lower in NiGe/n⁺Ge than in Ti/n⁺Ge and that the higher formation temperature (\geq 500°C) of *n*⁺Ge and higher 2nd P-I/I dose $(\geq 1 \times 10^{15} \text{ cm}^2)$ resulted in lower R_c . Ge *n*MOSFETs with NiGe/*n*⁺Ge junctions fabricated under the above conditions for low R_c revealed a reduction in parasitic resistance, leading to high I_{ON} while maintaining low I_{OFF}.

1. Introduction

High motilities of electrons and holes in Ge [1] make it a promising alternative to the conventional Si channel material for MOSFETs; however, to realize Ge *n*MOSFETs, the issue of high contact resistance (R_c) of NiGe/nGe must be resolved [2-6].

We previously reported two-step P-ion implantation (P-I/I) as a way to reduce R_C [6]; the 1st P-I/I is used to form n^+/p junctions, i.e., source/drain (S/D) on pGe(100) substrate, and the 2nd P-I/I is used to form the NiGe/ n^+ Ge interface with a high P concentration.

The two-step P-I/I was found to be effective in reducing the R_C of NiGe/ n^+ Ge junctions, while maintaining the reverse current level of conventional n^+/p junctions. A possible model is that the P in the 2nd I/I is electrically active around the NiGe/ n^+ Ge interface, even though the temperature used for germanidation (350°C) was insufficient; however, the dependence of the process parameters on R_C is still unclear. Moreover, the effect of two-step P-I/I on the electrical characteristics of Ge nMOSFETs has not been investigated.

In the present study, we examined the R_C of metal/ n^+ Ge junctions on pGe under various conditions such as different P doses, Ti contact as well as NiGe contact, and different formation temperatures of n^+ Ge, using two-step P-I/I. It was revealed that the para-sitic resistance (R_{para}) in Ge *n*MOSFETs with NiGe/ n^+ Ge junctions was reduced by two-step P-I/I under the appropriate conditions, leading to a high I_{ON} while maintaining a low I_{OFF} .

2. Experiment

Ge *n*MOSFETs [Fig. 1(a)] were fabricated as follows: 4-in pGe(100) wafers (0.05–0.25 Ω cm) with SiO₂ isolation were used as substrates. After DHF treatment and O₃ passivation, an Al₂O₃ gate dielectric layer was deposited (~2.5 nm EOT). TaN was deposited as the gate electrode, which was then patterned by EB lithography and RIE process. Implantation of P ions (dose of 1×10^{15} cm⁻² and acceleration energy of 10 keV) was conducted (1st P-I/I), followed by RTA at 400°C or 500°C in N₂ for 1 min to (15) P-1/1), followed by RTA at 400 C or 500 C in V_2 for 1 min to form n^+ Ge S/D regions. After SiO₂ deposition and contact hole formation, additional P ions (0, 2×10¹⁴, 1×10¹⁵, or 5×10¹⁵ cm⁻², 10 keV) were implanted (2nd P-I/I) into the S/D regions [Fig. 1(b)]. Ni film (10 nm) was deposited on the wafer and annealed at 350° C in N₂ for 1 min to form NiGe (~20 nm)/n⁺Ge in the contact hole regions. Then, the wafers were treated with HCl solution to remove unreacted Ni, which was followed by Ti deposition. Similarly to NiGe/ n^+ Ge, Ti/ n^+ Ge was also fabricated, where it was annealed at the same temperature as for germanidation before Ti deposition.

3. Results and Discussion

Each of the NiGe/n⁺Ge and Ti/n⁺Ge junctions revealed a dif-ferent dependence of the 2nd P-I/I dose on R_C . The J-V character-istics of NiGe/n⁺Ge junctions based on Kelvin pattern showed an increase in the current with the 2nd P-I/I dose (Fig. 2). The R_c , which was estimated from the J-V characteristics, decreased with the increase in the 2nd P-I/I dose, and reached the lowest value at 5×10^{15} cm⁻² [Fig. 3(a)]. We considered that the 2nd P-I/I increased the electrically active P atoms around the NiGe/ n^+ Ge interface, reducing the effective Schottky barrier height and the R_C . Ti/ n^* Ge junctions also showed that the R_C decreased with the 2nd P-I/I doses of 2×10^{14} and 1×10^{15} cm⁻². Our previous work showed an increase in the R_C of Ti/ n^* Ge formed by two-step P I/I, probably because annealing was not carried out after the 2nd P-I/I, preventing the recovery of Ti/n^+Ge from I/I damage [Fig. 3(b)] and causing residual defects that deactivated P in n^+ Ge. Similarly, the

reason why the R_C of Ti/ n^+ Ge started to increase at the dose of 1×10^{15} cm⁻² is possibly that the higher 2nd P-I/I dose caused more is possibly that the higher 2nd P-I/I dose caused more I/I damage. Although a model of the germanidation in which the P around the NiGe/Ge interface is electrically active has been proposed [7], the results for Ti/n^+ Ge suggest that germanidation is unnecessary.

It was revealed that the formation temperature of the n^+ Ge layer affected the R_C . NiGe/ n^+ Ge and Ti/ n^+ Ge, where n^+ Ge layers were formed at lower temperature (400°C), had a higher R_C [Fig. 3(b)]. The R_C of NiGe/ n^+ Ge where the n^+ Ge layer was formed at 600°C in our previous study was lower than that in the present study. This temperature dependence would also be related to the residual defects by the 2nd P-I/I, because a higher temperature can decrease more residual defects in the n^+ Ge layer; however, a high temperature causes electrical degradation of the gate stack. Therefore, it is necessary to select the appropriate temperature, which was \leq 500°C in our study, taking into account the electrical activation of P in Ge and degradation of the gate stack.

Similarly to R_c , the sheet resistance (R_s) of n^+ Ge was estimated from the *J*-*V* characteristics of NiGe/ n^+ Ge/NiGe based on Kelvin pattern (Fig. 4). R_S remained unchanged for the 2nd P-I/I dose (Fig. 5), which is reasonable given that it was determined by the n^+ Ge region without the 2nd P I/I. On the other hand, R_S was lower in the n^+ Ge layer formed at 500°C than at 400°C, which would be similarly related to the residual defects described above.

We confirmed that the reverse current level of n^+/p junctions was maintained irrespective of the 2nd P-I/I (Fig. 6). This sug-gests that the 2nd P-I/I did not generate a defect-related leakage current. On the other hand, the ratio of J_F at -1 V to J_R at 1 V in the J-V characteristics amounted to $\sim 10^7$. Note that J_F increased with the 2nd P.I/I did not generate the reduction of P_F with the 2nd-P I/I dose, suggesting the reduction of R_0

Ge *n*MOSFETs with NiGe/n^{*}Ge junctions formed by two-step P-I/I revealed an increase in I_D . I_D - V_G characteristics of the device [Fig. 7(a)] showed that I_D increased in the 2nd P-I/I dose, and reached almost the same level as that at the dose of $\ge 1 \times 10^{15}$ cm⁻². On the other hand, the subthreshold slope remained almost the same for the devices irrespective of the 2nd P-I/I [Fig. 7(b)]. The increase in I_D originated from the reduction of R_{para} , which

was estimated based on the relationship between the gata length (L_G) and the total resistance (R_{total}) and by the effective channel

 (L_G) and the total resistance (R_{total}) and by the effective channel length method [8]. The R_{total} at which the fitted lines converge corresponds to the R_{para} (Fig. 8). The R_{para} decreased with increas-ing 2nd P-I/I dose [Fig. 9(a)]. The R_{para} was reduced due to the reduction of R_C . The R_{para} for Ge *n*MOSFETs in the present study is summarized in Fig. 9(a); for instance, in the case of NiGe/*n*⁺Ge junctions with the *n*⁺Ge layer formed at 500°C, R_{para} decreased with increasing 2nd P-I/I dose. We confirmed that R_{para} corresponded to the sum of $2R_C$ and $2R_S$ [Fig. 9(b)], where R_S of the *n*⁺Ge region between the gate edge and contact hole (Fig. 1) was estimated from R_c based on Kelvin and contact hole (Fig. 1) was estimated from R_S based on Kelvin pattern (Fig. 5). In the case without the 2nd P-I/I, $2R_C$ was dominant in the R_{para} . With increasing 2nd P-I/I dose, $2R_C$ decreased to

~180 $\Omega\mu m$, resulting in the lowest R_{para} of ~470 $\Omega\mu m$. Thus, two-step P-I/I can reduce the R_{para} because of the reduction of R_C , leading to the increase of I_{ON} in Ge *n*MOSFETs.

4. Summarv

Two-step P-I/I was investigated as a means to reduce the R_C of metal/ n^+ Ge than in Ti/ n^+ Ge and that the higher formation tem-NiGe/ n^+ Ge than in Ti/ n^+ Ge and that the higher formation temperature (\geq 500°C) of *n*⁺Ge and higher 2nd P-I/I dose (\geq 1×10¹⁵ cm⁻²) resulted in lower R_C of NiGe/*n*⁺Ge. Since the two-step P-I/I resulted in negligible R_C compared with R_{para} , Ge *n*MOSFETs (L_G : 110–350 nm) fabricated under the above conditions for low R_C could enhance I_{ON} while maintaining low I_{OFF} . Thus, two-step P-I/I is effective for fabricating Ge *n*MOSFETs with a high I_{ON} and a low junction leakage current.

Acknowledgments

We would like to thank all the technical staff of AIST for supporting our experiment. This research was supported by a grant from JSPS through the FIRST Program initiated by CSTP.

References

- [1] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) 2nd ed.
- [2] A. Dimoulas et al., Appl. Phys. Lett. 89, 252110 (2006).
- [3] P. Tsipas and A. Dimoulas, Appl. Phys. Lett. 94, 012114 (2009).
- [4] M. Koike et al., Appl. Phys. Express 4, 021301 (2011).
- [5] M. Koike et al., Appl. Phys. Lett. 102, 032108 (2013).
- [6] M. Koike et al., Appl. Phys. Express 7, 051302 (2014).
- [7] T. Nishimura et al., Appl. Phys. Express 2, 021202 (2009).
- [8] K. Terada and H. Muta, Jpn. J. Appl. Phys. 18, 953 (1979).

FIG. 1: (a) Structure of Ge nMOSFET fabricated in the present study, and (b) enlarged view of NiGe/ n^+ Ge with 2nd P-I/I region.

FIG. 2: *J-V* characteristics of Ni-Ge/ n^+ Ge based on Kelvin pattern, where n^+ Ge was formed at 500°C. The 2nd P-I/I doses were 0, 2×10¹⁴, 1×10¹⁵, and 5×10¹⁵ cm⁻².

FIG. 4: *J*-*V* characteristics of Ni-Ge/ n^+ Ge/NiGe formed by two-step P-I/I in Kelvin pattern for R_S estimation.

FIG. 5: Dependence of 2nd P-I/I dose and formation temperature of n^+ Ge on R_s , which was estimated from *J*-V characteristics (Fig 4). (a)

FIG. 8: Relationship between L_G and R_{total} of Ge *n*MOSFETs with NiGe/n⁺Ge junctions formed by two-step P-I/I. R_{para} was estimated by the effective channel length method; the values at which the fitted lines converge correspond to R_{para} .

FIG. 3: Dependence of 2nd P-I/I dose on R_C of NiGe/ n^+ Ge junctions. R_C was estimated from *J-V* characteristics in Fig. 2. The n^+ Ge layers were formed at (a) 500°C and (b) 400°C. Contact hole size was $1.2 \times 1.2 \ \mu m^2$, the same as that in Ge *n*MOSFETs (Fig. 1). Error bar shows the 95% confidence interval of the lognormal distribution.

FIG. 6: J-V characteristics of NiGe/ n^+ Ge/pGe(100) junctions formed by two-step P-I/I, where n^+ Ge was formed at 500°C.

FIG. 7: I_D - V_G characteristics of Ge *n*MOSFETs with NiGe/ n^+ Ge junctions formed by two-step P-I/I, where n^+ Ge was formed at 500°C. (a) Linear plots and (b) log plots.

FIG 9: (a) Summary of R_{para} for MOSFETs in this study, and (b) dependence of 2nd P-I/I dose on R_{para} R_C and R_S . R_{para} (Fig. 8) was estimated from the L_G - R_{total} relationship of Ge *n*MOSFETs, whereas R_C (Fig. 3) and R_S (Fig. 5) were estimated by Kelvin pattern, respectively.