n⁺/p⁺-Single Doping Effects on Impurity Band Structure Modulation in Two Dimensional Si Lavers

T. Mizuno, Y. Nakahara, Y. Nagamine, Y. Suzuki, Y. Nagata, T. Aoki, and T. Sameshima* Kanagawa Univ., Hiratsuka, Japan (<u>mizuno@info.kanagawa-u.ac.jp</u>), * Tokyo Univ. of Agric. and Tech., Koganei, Japan

Abstract

 $\delta E_G = 15.7 \ln(N/3.32 \times 10^{19}).$ (1)

We experimentally studied n^+/p^+ single dopant atom effects on band structure modulation in 2D-Si layers in a wide range of dopant density N, using photoluminescence (PL) method. Bandgap E_G of both n⁺/p⁺ 2D-Si strongly depends on the N, and decreases with increasing N, which is attributable to E_G narrowing effects δE_G . However, δE_G in the doped 2D-Si is much smaller than that of 3D-Si and depends on the dopant type. We introduce a simple model for the small δE_G , considering the impurity band structure modulation in a heavily doped 2D-Si. Moreover, small PL polarization of doped 2D-Si is also discussed. I. Introduction

In two dimensional (2D) Si layers, which are key structures for realizing extremely-thin SOIs (ETSOIs) and FinFET CMOS [1], as well as Si photonic devices [2], we experimentally demonstrated phonon confinement effects (PCE) caused by the Heisenberg's uncertainty principle of the phonon wave vector and bandgap (E_G) expanding due to electron confinement effects [3]- [5]. Moreover, in the case of an n^+ 2D-Si in less than 4×10^{20} cm⁻³, PL method show that δE_G is reduced [5], compared to that of 3D-Si [6]. The δE_G of 3D-Si is attributable to the impurity band of donors including the band tailing [7]. Moreover, donor level modulation in an 1D-Si is reported [8]. To design a pn junction of CMOS composed of 2D-Si in detail, it is strongly required to clarify both the reduced δE_G effects in detail and the physical mechanism in both n⁺ and p⁺ 2D-Si in a wide range of dopant density.

In this work, we experimentally studied the n^+/p^+ single dopant atom effects on the band structures in doped 2D-Si layers fabricated by ion implantation, using PL method. We confirmed that E_G strongly depends on an impurity dopant density N, decreases with increasing the N in both n^+/p^+ 2D-Si layers, but δE_G in doped 2D-Si is much smaller than that in doped 3D-Si. The reduced δE_G in doped 2D-Si is possibly attributable to the impurity band E_I modulation (IBM) effects in doped 2D-Si. Next, we show small PL polarization in a doped 2D-Si, which is possibly caused by the disturbed crystal direction due to heavy impurity dopant.

II. Experimental for Doped 2D-Si Layers

To control 2D-Si thickness T_S very well, n⁺ and p⁺ 2D-Si layers were fabricated by two-step (low-temperature (T) after high-T oxidation) thermal oxidation induced thinning of (100) bonded SOI substrates (Figs.1 and 2). In addition, P^+ for donor and B^+ for acceptor ions were implanted in different process steps (Figs.1 and **2)**, considering that the P^+ and B^+ segregation coefficients *m* at the Si/SiO₂ interface, during the oxidation of SOI substrates, are about 10 and 0.1, respectively [5], [9].

HRTEM observation shows very uniformity and good crystal quality of n^+ 2D-Si layer even at higher N condition (Fig.3), which is the same image as HRTEM result of intrinsic 2D-Si [3]

SIMS results for boron profile in a doped 2D-Si show that average of experimental boron density $\overline{M_B}$ is almost the same as the 2D simulation results [10] (Fig.4), although the SIMS profile at the oxide/Si interfaces is inaccurate, because of the SIMS detection limit. Thus, in this study, N of 2D-Si in various ion implantation conditions can be obtained by the simulation results [10].

We analyzed the E_G properties of n^+/p^+ 2D-Si evaluated by PL method with 2.33eV excitation laser at room temperature [4]. Laser power P_L was 1mW to compress the P_L heating of Si [4], and the laser diameter is 1µm.

III. Dopant Density Dependence of δE_G

N dependence of PL spectra shows that PL intensity I_{PL} and E_G in both n^{+}/p^{+} 2D-Si decreases with increasing N (Figs.5 and 6), where $E_{G} \propto N^{-0.009}$ in both n^{+}/p^{+} 2D-Si (Fig.6). However, the N $E_G \propto N^{-0.009}$ in both n⁺/p⁺ 2D-Si (Fig.6). However, the N dependence in p⁺ 2D-Si is much different from that of n⁺ 2D-Si (Fig.6). The reduced E_G in both n⁺/p⁺ 2D-Si is attributable to the δE_G caused by the impurity band in a degenerate Si [7], [8]. Here, $\delta E_G = E_{GI} - E_{GD}$, where E_{GI} and E_{GD} are E_G of intrinsic and doped 2D-Si, respectively (Figs.6-8(a)). δE_G of n⁺ 2D-Si is much smaller than that of 3D-Si ($\delta E_G = 18.7 \ln(N/7 \times 10^{17})$ [6], and the δE_G of n⁺ 2D-Si can be well fitted by the following equation (**Fig.7**):

Thus, the coefficient of N in Eq.(1) is larger by about two orders of magnitude than that of 3D-Si [6]. However, δE_G difference between p⁺ 2D-Si and 3D-Si is very small (Fig.7). Consequently, the reduced δE_G is the characteristic of doped 2D-Si, and depends on the dopant type.

IV. Impurity Band Modulation (IBM) of Doped 2D-Si

To explain the δE_G difference between 2D- and 3D-Si (Fig.7), we consider that there are two possible mechanisms. One is the donor deactivation effects in the 2D-Si, and the other is IBM. Using the former model, the donor activation rate in the 2D-Si should be reduced by about two orders of magnitude, compared to that of 3D-Si (Fig.7). However, the possibility of the above larger deactivation is very low, because even in 1D-Si, the donor activation rate is reduced by only one order of magnitude [8]. introduce the IBM model in this study (**Fig.8**). Thus, we

Doped 2D-Si has a step function of density of states (DOS) due to the quantum confinement effects of electrons, whereas $DOS(E) \propto$ \sqrt{E} in the 3D-Si [6]. E_I including the band tailing causes the δE_G [7] (Fig.8). The bandwidth of E_I , ΔE_I expands with increasing donor concentration N_D [10], resulting in the δE_G increase (Fig.7). On the other hand (Fig.8 (b)), ΔE_I of n⁺ 2D-Si becomes possibly narrower by δE_I , resulting in the δE_G reduction in the doped 2D-Si. Namely, since $E_G = E_C - E_V - \delta E_G$ in a doped Si (Fig.8 (a)), δE_G of doped 2D-Si, δE_{G-2D} can be expressed by δE_{G-3D} of 3D-Si. That is (Fig.8 (a)),

$$\delta E_{G-2D} = \delta E_{G-3D} - \delta E_I \quad (2),$$

where δE_I is the IBM in 2D-Si.

Using Eq.(2) and Fig.7 data, δE_I can be estimated in both n⁺/p⁺ 2D-Si layers (Fig.9). δE_I is independent of *N*, but δE_I of n⁺ 2D-Si (~81meV) is much larger than that of p⁺ 2D-Si (~26meV). This suggests that δE_I strongly depends on the impurity type of donor or acceptor. Physical mechanism for δE_I is not understood at present, but is possibly due to band tailing [7] reduction in the 2D-Si, since the donor's ionization energy increases in the case of 1D-Si [8], and thus this tendency is opposite to the experimental data.

V. PL Polarization of Doped 2D-Si

In an intrinsic 2D-Si, PL intensity is polarized [12], which is considered to be attributable to some optical anisotropic-properties of 2D-Si quantum well which relates to the crystal direction [13]. Even in a doped 2D-Si, PL intensity is also polarized (Fig.10). In addition, the PL polarization degree P, defined by $P(\theta) \equiv (I_{PL}(0^{\circ}) - I_{PL}(\theta))/(I_{PL}(0^{\circ}) + I_{PL}(\theta))$ (0° shows the [110] direction) is almost independent of dopant density and impurity type, but is smaller than that of intrinsic 2D-Si (Fig.11). Thus, heavily dopant atoms affect the optical anisotropic-properties and crystal quality of 2D-Si.

On the other hand, PL peak energy of the doped 2D-Si is independent of the crystal direction (Fig.12), similar to 2D i-Si [12]. VII. Conclusion

We experimentally studied n^+/p^+ dopant atom effects on E_G in 2D-Si layers in a wide range of N, using PL method. E_G of both n⁺/p⁻ 2D-Si decreases with increasing N, which is attributable to E_G narrowing effects δE_G . However, δE_G in the doped 2D-Si is much smaller than that of 3D-Si, and depends on the dopant type. We introduce a simple model for the small δE_G , considering the impurity band structure modulation (IBM) in a heavily doped 2D-Si. Consequently, using the detailed E_G properties of the doped 2D-Si, we can precisely design a pn junction structure for future CMOS composed of 2D-Si.

Acknowledgement: We would like to thank Prof. J. Nakata and Dr. Y. Hoshino of Kanagawa Univ. for ion implantation. This work was partially supported by KAKENHI (24560422).

KAKENHI (24560422).
References:[1] J.-P.Colinge, SILICON-ON-INSULATOR TECHNOLOGYOI, (Kluwer Academic Publishers) 2004. [2] S. Saito, IEDM 2008, Paper 19.5. [3] T. Mizuno, JJAP 51, 02BC03, 2012. [4] T. Mizuno, JJAP 52, 04CC13, 2013. [5] T. Mizuno, JJAP 53, 04EC08, 2014. [6] S. M. Sze, Physics of Semiconductor Devices (Wiley), 2007. [7] D.S. Lee, IEEE TED 30, 626, 1983. [8] M.T. Björk, Nature Nanotech. 4, 103, 2009. [9] A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley), 1967. [10] www.silvaco.com. [11] H.Ikeda, APL 96, 012106, 2010. [12] T. Mizuno, JJAP 53, 04EC09, 2014. [13] Y. Kanemitsu, Phys. Rev. B 56, R15 561 (1997).

Fig.1 Schematic two-step oxidation fabrication process for 2D-n⁺ layers. (a) After P⁺ implantation into (100)SOI, (b) Si was thinned by high temperature oxidation (1000°C). (c) Additional low-T oxidation (900°C) after (b) was carried out to form nm-region thick Si layer.

Fig.2 Schematic two-step oxidation fabrication for $2D\text{-}p^+$ layers. (a) After high-T oxidation process (1000°C), (b) B^+ was implanted into thinned (100)SOI. (c) Additional low-T oxidation (900°C) after (b) was carried out to form nm-region thick Si layer.

Fig.3 HRTEM observation of cross section of 2D-n⁺ layer with N_D =4×10²⁰ cm⁻³. (a) Very uniform 2D-n⁺ layer, and (b) good Si lattice image and T_S =0.54nm.

Fig.4 SIMS (solid line) and simulation distribution (dotted line) for boron atoms, where boron dose is $1 \times 10^{16} \mathrm{cm}^2$ and T_{3} =4nm. Minimum T_{5} for SIMS detection limit is about several nm. Dashed line shows the experimental average of boron density $(1.8 \times 10^{20} \mathrm{cm}^{-3})$ in Si layer which is obtained by the SIMS data, and is almost the same level as the simulation result $(1.2 \times 10^{20} \mathrm{cm}^{-3})$ in Si.

Fig.5 Dopant density dependence of PL spectra of (a) n^+ and (b) p^+ 2D-Si, where $T_{s=0.5nm}$. Dotted and dashed line in (b) shows the E_{PH} of i-Si.

Fig.6 E_{PH} vs. simulated impurity density of n⁺(circles) and p⁺ 2D-Si (triangles), where T_{S} =0.5nm. Dotted and dashed line shows the E_{PH} of i-Si. Vertical and lateral error bars show the PL resolution and N accuracy (Fig.4 data) in this study. Dashed line shows the fifting curve of $E_G \propto N^{-0.009}$, where the correlation coefficient is 0.98.

Fig.7 Bandgap narrowing vs. simulated impurity density of n⁺ (circles) and p⁺ 2D-Si (triangles), where $T_S=0.5$ nm. Solid line shows empirically formula of 3D-Si [6]. Dashed line shows the fitting curve of $\delta E_G =$ $15.7 \ln(N_D/3.32 \times 10^{19})$ in n⁺ 2D-Si with the correlation coefficient of 0.98. δE_I is E_I modulation in n⁺ 2D-Si.

Fig.8 Schematic density of states functions (*E* vs. DOS) for (a) n⁺ 3D-Si [7] and (b) n⁺ 2D-Si with expanded E_G . Dashed and solid lines show the conduction and impurity bands, respectively. Dotted line in (b) shows the impurity band of 3D-Si. δE_G , ΔE_I and δE_I are E_G narrowing, E_I band width and E_I modulation, respectively.

Fig.9 Impurity band structure modulation of n⁺ (circles); δE_{IIV} and p⁺ 2D-Si (triangles); δE_{IIP} as a function of simulated dopant density, where $T_S=0.5$ m. Both δE_{IIV} and δE_{IIP} are independent of dopant density, but δE_{IIV} is much larger than δE_{IIP} .

Fig.10 Polarization PL spectra of 2D-n⁺ layer in various θ , where $N=2\times10^{21}$ cm⁻³ and $T_S=0.5$ nm. $\overline{E_L}$ at fixed [110] direction and $\overline{E_{PL}}$ in the inset show polarization laser and PL vectors, respectively, and θ is the angle between $\overline{E_L}$ and $\overline{E_{PL}}$.

Fig.11 PL polarization degree of n⁺ (solid lines), p⁺ (dashed line), and intrinsic 2D-Si (dotted line) at $\vec{E}_L = [110]$ as a function of θ , where $T_S = 0.5$ nm.

Fig.12 ϕ dependence of E_{PH} at $\theta=0^{\circ}$ (circles) and 90° (triangles), where $N=2\times10^{21}$ cm⁻³ and $T_{S}=0.5$ nm. Inset shows the polarization laser angle ϕ between [110] direction and $\overline{E_{L}}$.