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Abstract 
Low-frequency noise (LFN) has been investigated in 

Si and SiGe -gate nanowire (NW) PMOS FETs. 
3-types of technological splits have been studied, in-
cluding reference Si-on-insulator (SOI), SOI with SiGe 
source/drain (S/D), and SiGe-on-insulator (SGOI). Our 
results reveal SGOI NW largely improves ION and is less 
impacted by S/D access resistance. Moreover, excellent 
quality of the oxide/channel interfaces with Hf-based 
high-k/metal gate is sustained in all the devices. 

 
1. Introduction  

Multigate (MG) architectures, such as NW FETs [1-4], 
are powerful solutions for upcoming CMOS technology 
nodes. In addition, the strain introduced for p-type channel 
by SiGe S/D [5] and/or SiGe channel [2,6] formation is a 
key feature for further enhancement of PMOS performance. 
However, controlled quality of the 3D multiple interfaces 
with strain effect could be a critical issue. LFN measure-
ment is an efficient diagnosis tool to assess the electrical 
properties of FETs, even in aggressively scaled MG archi-
tectures [2,7-10]. In this work, the oxide/channel interface 
properties are investigated in detail by LFN characteriza-
tion for SOI and SGOI -gate NW PMOS FETs. 
2. Devices, Measurements, and Results 

The -gate NW PMOS FETs (Fig.1) were fabricated 
starting from (001) SOI wafers with 12nm-thick Si (cor-
responding to the NW height HNW), and 145nm-thick BOX, 
using the top-down approach [3,4]. Compressive strain has 
been introduced to the channel by Si0.8Ge0.2 channel formed 
by Ge enrichment technique and/or by raised Si0.7Ge0.3 S/D. 
The initial biaxial stress in SGOI corresponds to 1.2GPa 
and is reduced to a uniaxial stress in NWs. After etching, 
[110]-oriented NW structures with top width Wtop down to 
14nm have been obtained. All the devices have a 
HfSiON/TiN gate stack leading to EOT=1.25nm. The Id-Vg 
curves of the narrowest NW FETs show good properties for 
all the technological splits (Fig.2). SGOI NW demonstrates 
Id enhancement as high as +170% compared to SOI NW. 

LFN measurements were performed at room tempera-
ture under a probe level using a semi-automatic noise 
measurement system by Synergy concept [11]. Normalized 
drain current noise spectra SId/Id

2 as a function of frequency 
in the SOI and SGOI narrowest NWs show 1/f noise be-
havior at the threshold voltage operation (Fig.3). 1/f noise 
can be interpreted by the CNF+CMF model (cf. (2) in Ta-

ble I) [12,13] as for NMOS NWs [9,10]. Fig.4 shows the 
SId/Id

2 spectra normalized by the channel area (Wtot and Lg), 
as a function of Id for all our devices. Agreement between 
the SId/Id

2 plots and the corresponding (gm/Id)
2 curves is 

observed  in  all  the  devices. For SOI devices, a large 
roll-up of the noise level in strong inversion for both NW 
and wide FETs is also observed. This indicates the contri-
bution from S/D series resistance RSD [14]. The worse S/D 
contact for PMOS than NMOS is generally attributed to 
less controllability of the boron dopant. The CNF+CMF 
model can be simply completed by considering the excess 
noise stemming from the S/D access region as (3) in Table I 
[14]. In Fig.5, the SId/Id

2-Id plots above Vt for SOI devices 
can be perfectly described by RSD impact. For both SiGe 
S/D and SGOI, the spectra in the NWs are well interpreted 
by considering both scµeff and SRsd terms, whereas for 
wide FETs the scµeff term is dominant. The summarized 
scµeff and SRsd values clearly show the advantage of SGOI 
devices, and also agree with better RSD value for NWs. Ex-
tracted SVfb by direct fitting method [9] exhibits roughly 
simple channel scaling effect, i.e. the noise level is in-
versely proportional to Wtop, for all the splits (Fig.6). The 
gate oxide trap density Nt around quasi-Fermi energy level 
can be derived using SVfb as (4) in Table I [13]. The com-
puted Nt values lie in same order for all the splits and in 
similar or lower order as previous reports regardless of the 
carrier type [5,8-10], and are not significantly altered by the 
Wtop scaling and the NW geometry (Fig.7a). It is concluded 
that excellent oxide/interface quality is maintained in all the 
Si and  SiGe channel devices down to the narrowest NW 
FETs. The contributions of  top surface (Nt_top) and 
side-wall (Nt_side-wall) can further be assessed [9] 
(Fig.7b). The (110) planes in side-walls are slightly better 
than the (100) top surface in all the devices, whereas strain 
technology does not largely degrade the interface quality. 
3. Conclusions 

The oxide/channel interface in ultra-scaled -gate NW 
PMOS FETs have been analyzed by LFN measurements. 
The CNF+CMF model with consideration of RSD impact 
perfectly assesses 3-types of technological variants. An 
excellent quality of the interface, with oxide trap density 
below 5×1017eV-1cm-3, is preserved for all the devices 
down to the narrowest NWs. We thus demonstrated that 
SGOI NW has powerful potential for high PMOS perfor-
mances with significant ION enhancement compared to SOI 
NW, while maintaining low RSD and good interfaces. 
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Table I. Considered equations in this paper 

Si

poly‐Si

BOX

SiO2

TiN
HfSiON

HNW

Wtop

5nm

Source

DrainGate

Si
BOX

[110]

[001]
[110]

Si or SiGe Ch.

 

Si0.7Ge0.3

Si0.7Ge0.3

Si

Raised 
S/D with 
B dope

Si0.8Ge0.2

Si

Si

Channel

110nm14nm9.5nmSiGe S/D

108nm

107nm

Gate 
length 

Lg

13nm11.5nmSGOI

13.5nm

NW 
height 

HNW

17nmSOI

[110]-oriented  
-gate PMOS

Narrowest 
NW top 

width Wtop

Si0.7Ge0.3

Si0.7Ge0.3

Si

Raised 
S/D with 
B dope

Si0.8Ge0.2

Si

Si

Channel

110nm14nm9.5nmSiGe S/D

108nm

107nm

Gate 
length 

Lg

13nm11.5nmSGOI

13.5nm

NW 
height 

HNW

17nmSOI

[110]-oriented  
-gate PMOS

Narrowest 
NW top 

width Wtop

Rsd
d

d S
V

I
2











Vfb
m

d
oxeffsc

d

m

d

Id S
g

I
Cµ

I

g

I

S
22

2
1 

















 

kTq

SCLfW
N

Vfboxgtot
t 2

2



(3)

(4)

(2)

NWtoptot HWW 2 (1)

Vfb
m

d
oxeffsc

d

m

d

Id S
g

I
Cµ

I

g

I

S
22

2
1 

















 

Fig. 1. Schematics of the -gate NWs and TEM 
picture of the cross-section of SOI NW. The table 
summarizes the technological splits. 
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Fig. 4. Id dependent (symbols) drain current noise SId/Id
2 and (lines) corresponding (gm/Id)

2 curve 
characteristics normalized by channel area parameters (Wtot and Lg) for the narrowest NW and wide 
FETs in (a) SOI, (b) SiGe S/D, and (c) SGOI devices. 
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Fig. 2. Id-Vg curves of the narrowest NW FETs 
for all the technological splits, and table summa-
rizing the basic performances of the FETs. 
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Fig. 3. Normalized drain current noise SId/Id
2 as a 

function of frequency in the narrowest NW FETs 
for (a) SOI and (b) SGOI devices (bold line: 
average on 4 or 6 devices). 

 

Fig. 5. Id dependent (symbols) SId/Id
2 and (lines) corresponding (gm/Id)

2 curve with consideration of 
the scµeff and SRsd term shown in (2), showing (a) the narrowest NW vs. wide FETs in SOI devices, 
and SiGe S/D vs. SGOI devices in (b) NWs, and in (c) wide FETs. The table summarizes the ex-
tracted scµeff and SRsd values for all the PMOS FETs, and the S/D series resistance RSD in NWs. 
 

0.01 0.1 1
10-11

10-10

10-9

10-8

 

 

S
V

fb
 (

V
2 /H

z)

W
tot

 (µm)

 SOI
 SiGe S/D
 SGOI

 

0.01 0.1 0.5
1016

1017

1018

1019

 

N
t (

eV
-1
cm

-3
)

W
top

 (µm)

 SOI
 SiGe S/D
 SGOI

(a)

SOI
SiGe S/D

SGOI

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

N
t (

×
10

17
 e

V
-1
cm

-3
)

 Nt_(100) top
 Nt_(110) side-walls

(b)

Fig. 6. Flat-band voltage noise SVfb as a 
function of the total effective channel width 
Wtot for all the devices. 

Fig. 7. (a) Gate oxide trap density Nt as a function of the channel top width Wtop for all 
the devices. (b) Extracted Nt components of the channel top surface and side-walls by a 
model of the contributions separation [9]. 
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