Study of Si- and SiGe-on-Insulator Ω-gate Nanowire PMOS FETs by Low-frequency Noise Measurements

M. Koyama^{1,2}, M. Cassé¹, S. Barraud¹, P. Nguyen^{1,3}, G. Ghibaudo⁴, H. Iwai², and G. Reimbold¹

¹ CEA-LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France

² Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

³ SOITEC, Parc Technologiques des Fontaines, 38926 Bernin, France

⁴ IMEP-LAHC, INPG-MINATEC, 3 Parvis Louis Neel, 38016 Grenoble Cedex 1, France

Phone: +33-4-3878-1843 E-mail: masahiro.koyama@cea.fr

Abstract

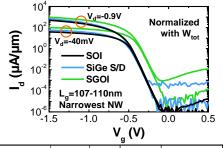
Low-frequency noise (LFN) has been investigated in Si and SiGe Ω -gate nanowire (NW) PMOS FETs. 3-types of technological splits have been studied, including reference Si-on-insulator (SOI), SOI with SiGe source/drain (S/D), and SiGe-on-insulator (SGOI). Our results reveal SGOI NW largely improves I_{ON} and is less impacted by S/D access resistance. Moreover, excellent quality of the oxide/channel interfaces with Hf-based high-k/metal gate is sustained in all the devices.

1. Introduction

Multigate (MG) architectures, such as NW FETs [1-4], are powerful solutions for upcoming CMOS technology nodes. In addition, the strain introduced for p-type channel by SiGe S/D [5] and/or SiGe channel [2,6] formation is a key feature for further enhancement of PMOS performance. However, controlled quality of the 3D multiple interfaces with strain effect could be a critical issue. LFN measurement is an efficient diagnosis tool to assess the electrical properties of FETs, even in aggressively scaled MG architectures [2,7-10]. In this work, the oxide/channel interface properties are investigated in detail by LFN characterization for SOI and SGOI Ω -gate NW PMOS FETs.

2. Devices, Measurements, and Results

The Ω -gate NW PMOS FETs (Fig.1) were fabricated starting from (001) SOI wafers with \approx 12nm-thick Si (corresponding to the NW height H_{NW}) and 145nm-thick BOX, using the top-down approach [3,4]. Compressive strain has been introduced to the channel by Si_{0.8}Ge_{0.2} channel formed by Ge enrichment technique and/or by raised Si_{0.7}Ge_{0.3} S/D. The initial biaxial stress in SGOI corresponds to \approx 1.2GPa and is reduced to a uniaxial stress in NWs. After etching, [110]-oriented NW structures with top width W_{top} down to \approx 14nm have been obtained. All the devices have a HfSiON/TiN gate stack leading to EOT=1.25nm. The I_d-V_g curves of the narrowest NW FETs show good properties for all the technological splits (Fig.2). SGOI NW demonstrates I_d enhancement as high as \approx +170% compared to SOI NW.


LFN measurements were performed at room temperature under a probe level using a semi-automatic noise measurement system by Synergy concept [11]. Normalized drain current noise spectra S_{Id}/I_d^2 as a function of frequency in the SOI and SGOI narrowest NWs show 1/f noise behavior at the threshold voltage operation (Fig.3). 1/f noise can be interpreted by the CNF+CMF model (cf. (2) in Table I) [12,13] as for NMOS NWs [9,10]. Fig.4 shows the S_{Id}/I_d^2 spectra normalized by the channel area (W_{tot} and L_g), as a function of I_d for all our devices. Agreement between the S_{Id}/I_d^2 plots and the corresponding $(g_m/I_d)^2$ curves is observed in all the devices. For SOI devices, a large roll-up of the noise level in strong inversion for both NW and wide FETs is also observed. This indicates the contribution from S/D series resistance R_{SD} [14]. The worse S/D contact for PMOS than NMOS is generally attributed to less controllability of the boron dopant. The CNF+CMF model can be simply completed by considering the excess noise stemming from the S/D access region as (3) in Table I [14]. In Fig.5, the S_{Id}/I_d^2 - I_d plots above V_t for SOI devices can be perfectly described by R_{SD} impact. For both SiGe S/D and SGOI, the spectra in the NWs are well interpreted by considering both $\alpha_{sc}\mu_{eff}$ and S_{Rsd} terms, whereas for wide FETs the $\alpha_{sc}\mu_{eff}$ term is dominant. The summarized $\alpha_{sc}\mu_{eff}$ and S_{Rsd} values clearly show the advantage of SGOI devices, and also agree with better R_{SD} value for NWs. Extracted S_{Vfb} by direct fitting method [9] exhibits roughly simple channel scaling effect, *i.e.* the noise level is inversely proportional to W_{top}, for all the splits (Fig.6). The gate oxide trap density Nt around quasi-Fermi energy level can be derived using S_{Vfb} as (4) in Table I [13]. The computed Nt values lie in same order for all the splits and in similar or lower order as previous reports regardless of the carrier type [5,8-10], and are not significantly altered by the W_{top} scaling and the NW geometry (Fig.7a). It is concluded that excellent oxide/interface quality is maintained in all the Si and SiGe channel devices down to the narrowest NW FETs. The contributions of top surface (Nt_top) and side-wall (Nt_side-wall) can further be assessed [9] (Fig.7b). The (110) planes in side-walls are slightly better than the (100) top surface in all the devices, whereas strain technology does not largely degrade the interface quality. 3. Conclusions

The oxide/channel interface in ultra-scaled Ω -gate NW PMOS FETs have been analyzed by LFN measurements. The CNF+CMF model with consideration of R_{SD} impact perfectly assesses 3-types of technological variants. An excellent quality of the interface, with oxide trap density below $5 \times 10^{17} \text{eV}^{-1} \text{cm}^{-3}$, is preserved for all the devices down to the narrowest NWs. We thus demonstrated that SGOI NW has powerful potential for high PMOS performances with significant I_{ON} enhancement compared to SOI NW, while maintaining low R_{SD} and good interfaces.

Acknowledgment: This work has been partially carried out in the frame of the ST/IBM/LETI joint program.

References

- [1] I. Ferain et al., Nature 479, (2011) 310.
- [2] K.Tachi et al, IEDM Tech. Dig. (2009) 313.
- [3] M. Cassé et al., IEDM Tech. Dig. (2012) 637.
- [4] S. Barraud et al., Symp.VLSI Tech.Dig. (2013) T230.
- [5] B.C. Wang et al., IEEE EDL 33 (2012) 928.
- [6] D. Jang et al., Appl. Phys. Lett. 97 (2010) 073505.
- [7] M. Saitoh et al., Symp.VLSI Tech.Dig. (2013) T228.
- [8] J.W. Lee et al., Appl.Phys.Lett. 102 (2013) 073503.
- [9] M. Koyama et al., Proc. ULIS, (2014).
- [10] M. Koyama et al., Proc. VLSI-TSA (2014).
- [11] J. A. Chroboczek, Proc. ICMTS, (2003) 95.
- [12] G. Ghibaudo et al., Phys.Stat.Sol.(a) 124 (1991) 571.
- [13] M. von Haartman and M. Östling, Low-frequency noise in advanced MOS devices, Springer, 2007.
- [14] G. Ghibaudo et al., Microelec.Reliab. 42 (2002) 573.

[110]-oriented Ω-gate NW	V _t (V) V _d =-40mV	DIBL (mV/V)	SS (mV/dec)	I _{ON} gain vs. SOI V _g =V _t =-0.9V
SOI	-0.48	~23	60.9	133 µA/µm
SiGe S/D	-0.5	~47	63.6	+21%
SGOI	-0.4		68.2	+166%

Fig. 2. I_d - V_g curves of the narrowest NW FETs for all the technological splits, and table summarizing the basic performances of the FETs.

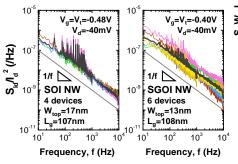


Fig. 3. Normalized drain current noise S_{Id}/I_d^2 as a function of frequency in the narrowest NW FETs for (a) SOI and (b) SGOI devices (bold line: average on 4 or 6 devices).

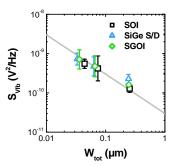
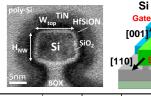


Fig. 6. Flat-band voltage noise S_{Vfb} as a function of the total effective channel width W_{tot} for all the devices.


Table I. Considered equations in this paper

$$W_{tot} = W_{top} + 2H_{NW} \quad (1)$$

$$\frac{S_{Id}}{I_d^2} = \left(\frac{g_m}{I_d}\right)^2 \left(1 + \alpha_{sc}\mu_{eff}C_{ox}\frac{I_d}{g_m}\right)^2 S_{Vfb} \quad (2)$$

$$\frac{S_{Id}}{I_d^2} = \left(\frac{g_m}{I_d}\right)^2 \left(1 + \alpha_{sc}\mu_{eff}C_{ox}\frac{I_d}{g_m}\right)^2 S_{Vfb} + \left(\frac{I_d}{V_d}\right)^2 S_{Rsd} \quad (3)$$

$$N_t = \frac{fW_{tot}L_g C_{ox}^2 S_{Vfb}}{q^2 kT\lambda} \quad (4)$$

Si or SiGe Ch.

BOX

[110]

Fig. 1. Schematics of the Ω -gate NWs and TEM picture of the cross-section of SOI NW. The table summarizes the technological splits.

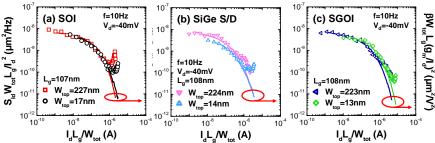


Fig. 4. I_d dependent (symbols) drain current noise S_{Id}/I_d^2 and (lines) corresponding $(g_m/I_d)^2$ curve characteristics normalized by channel area parameters (W_{tot} and L_g) for the narrowest NW and wide FETs in (a) SOI, (b) SiGe S/D, and (c) SGOI devices.

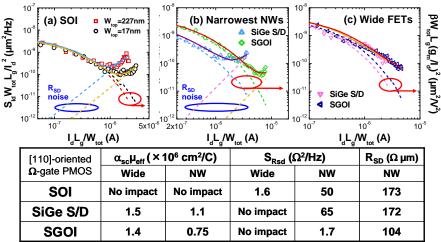


Fig. 5. I_d dependent (symbols) S_{Id}/I_d^2 and (lines) corresponding $(g_{m}/I_d)^2$ curve with consideration of the $\alpha_{sc}\mu_{eff}$ and S_{Rsd} term shown in (2), showing (a) the narrowest NW vs. wide FETs in SOI devices, and SiGe S/D vs. SGOI devices in (b) NWs, and in (c) wide FETs. The table summarizes the extracted $\alpha_{sc}\mu_{eff}$ and S_{Rsd} values for all the PMOS FETs, and the S/D series resistance R_{SD} in NWs.

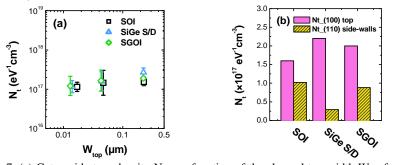


Fig. 7. (a) Gate oxide trap density N_t as a function of the channel top width W_{top} for all the devices. (b) Extracted N_t components of the channel top surface and side-walls by a model of the contributions separation [9].