Impact of High-к Spacers on Parasitic Effects Considering DC/AC Performance Optimization in Si-Nanowire FETs for sub 10 nm Technology Node

Jae-Ho Hong¹, Sang-Hyun Lee¹, Ye-Ram Kim¹, Eui-Young Jeong², Jun-Sik Yoon³, Jeong-Soo Lee^{1,2}, Rock-Hyun Baek⁴, and Yoon-Ha Jeong¹

¹Dept. of Electrical Engineering, ²Division of IT Convergence Engineering,

³Dept. of Creative IT Engineering, Pohang University of Technology and Science (POSTECH), Pohang, South Korea

⁴SEMATECH, 257 Fuller Road, Albany, NY 12203, USA

Phone: +82-54-279-2897, E-mail: jaeho8436@postech.ac.kr, yhjeong@postech.ac.kr

Abstract

In this paper, we proposed the optimized high- κ spacer design information of Si-nanowire FETs for sub 10 nm technology node. Using well-calibrated TCAD simulations and analytic RC models, the impacts of dielectric constant (ϵ_{sp}) and extension length (L_{EXT}) of spacer were extensively investigated in DC/AC performance within various power supply voltage V_{dd}. Due to a trade-off between source/drain series resistances (R_{SD}) and parasitic capacitances (C_{para}), the optimum value of ϵ_{sp} for AC performances shifts to low- κ as L_{EXT} and V_{dd} decrease.

1. Introduction

In the silicon technology, the fin-based multi-gate field effect transistors (FinFETs) have been successfully applied to mass production in 22 nm technology node [1]. In many attempts for further scaling, high-k spacer techniques have been considered and their effects on device performance have been reported in different structures such as junctionless transistors [2] and FinFETs [3]. However there are no enough researches about impacts of high-k spacers applied to gate-all-around nanowire FETs (GAA NWFETs), which are the one of attractive candidates for sub 10 nm technology node. In this paper, effects of the dielectric constant (ϵ_{sp}) and device geometry on DC/AC performances are quantitatively evaluated various figure-of-merit (FOM) such as Ion/Ioff, intrinsic delay (CV/I) and current-gain cutoff frequency (f_T) . Finally the optimized geometry demonstrating the best performance of NWFETs are suggested.

2. Device Structure and Parasitic RC Extraction

The structure of Si-NWFET is built based on International Technology Roadmap for Semiconductors (ITRS) criterion [4], as shown in **Fig. 1**. Especially we carefully thought about pitch and parasitic capacitance of Gate-to-S/D, which are extremely critical to current 3D MOSFET design. **Table I** indicates our TCAD electrical data are very close to ITRS estimation in reasonable range. The source/drain (S/D) series resistance (R_{SD}) of NWFETs is composed of five major components: the spreading resistance (R_{SP}), the extension resistance (R_{EXT}), the S/D nanowire interface resistance (R_{INT}), the deep S/D resistance (R_{DP}), and the contact resistance (R_{CON}). R_{SD} and each component are calculated by an analytical model [5] and compared with the extracted R_{SD} by the Y-function technique [6] simultaneously. The calculated R_{SD} show excellent agreement with the extracted R_{SD} for all high-κ materials (inset of **Fig. 3**). In addition, bias-independent overlap capacitance (C_{ov_indep}) and bias-dependent overlap capacitance (C_{ov_dep}) are extracted from gate capacitance (C_{gg}) [7] to calculate CV/I. At last, f_T are extracted using simulated Hparameters where the current-gain drops to unity ($|H_{21}|=1$).

3. Results and Discussion

Fig. 2 shows the I_D - V_G characteristics of GAA NWFETs. The on current is boosted about 57 % using HfO2 spacer instead of SiO2. Also all devices show strong short channel effects immunity, i.e 61 mV/dec subthreshold slope due to excellent gate controllability of GAA structures. This ID increase is attributed to R_{EXT} , R_{SP} , and R_{INT} decrease as ϵ_{sp} increases (Fig. 3). Especially, given that R_{SD} - R_{EXT} have nearly same value for different spacer materials (inset of Fig. 3), R_{EXT} reduction significantly contributes to R_{SD} decrease. In Fig.4, a higher electric field is induced by fringe electric field through the high-k materials between the channel and extension region. As a result in Fig. 5, the electron concentration accumulated at the extension region increases and the resistivity of R_{SP} , R_{EXT} , and R_{INT} namely ρ_{SP} ρ_{EXT} , and ρ_{INT} decrease (inset of **Fig. 5**). This is the reason why R_{SD} decrease with high- κ spacers. C_{gg} is normalized with the circumstance of the channel of NWFETs and increases as ϵ_{sp} increases due to C_{para} , as shown in Fig 6. In Fig 7, we compared constant value of intrinsic capacitance (C_{int}), C_{ov_indep} and C_{ov_idep} linearly increase because C_{ov_indep} and $C_{ov_{dep}}$ are directly proportional to ϵ_{sp} [8]. Due to tradeoff between R_{SD} and C_{para} , optimization process is imperative in design of NWFETs. Figs. 8 (a) and (b) show the trend of f_T and CV/I as functions of V_{dd} , ϵ_{sp} , and L_{EXT} , which are important variables in device designs. As V_{dd} and L_{EXT} decrease, optimum points of f_T and CV/I shifts to low- κ materials and we put optimum materials in **Table II**.

4. Conclusion

The effects of high- κ spacers on parasitic RC of GAA NWFETs are investigated with different materials and thickness. High- κ spacers can improve DC performance remarkably with increased on current by reducing $R_{\rm SD}$. Meanwhile, AC performance severely degraded due to increase of $C_{\rm para}$. The optimum points of delay and $f_{\rm T}$ are suggested in various V_{dd} and L_{EXT}. Considering a trade-off between $R_{\rm SD}$ and $C_{\rm para}$, optimized geometry is inevitable in design of NWFETs for sub 10nm technology node.

References

- [1] C. -H. Jan et al., IEDM Tech. Dig., (2012) 3.1.1
- [2] S. Gundapaneni et al., IEEE Elec. Dev. Lett., 32 (2011) 1325
- [3] A. Nandi et al., IEEE Trans. Elec. Dev., 60 (2013) 1529
- [4] The International Technology Roadmap for Semiconductors (ITRS), 2013. http://public.itrs.net
- [5] G. Kaushal et al., J Comput Elec., 12 (2013) 306
- [6] R.-H. Baek et al., Jpn. J. Appl. Phys. 49 (2010) 04DN06
- [7] R.-H. Baek et al., IEEE Elec. Dev. Lett., 32 (2011) 116
- [8] J. Zou et al., IEEE Trans. Elec. Dev., 58 (2011) 3379

Fig. 1. (a) Three-dimensional schematic representation of NWFETs with high- κ spacers (b) Crosssectional view of NWFETs with parasitic components descriptions [5],[8].

Fig. 4. Electric field comparison with different spacer materials.

Fig. 6. Normalized C_{gg} with different spacer materials.

Table I. Geometry Used in This Work

	ITRS (HP)	Simulation
Gate Pitch (nm)	64	64
Gate length (nm)	18	18
$V_{dd}(V)$	0.85	0.85
EOT (nm)	0.77	0.77
Channel doping (cm ⁻³)	1017	10^{17}
$R_{SD}(\Omega \cdot \mu m)$	146	144 ~ 220
$C_{gg}(fF/\mu m)$	1.1	0.85 ~ 1.6
C _{para} (fF/µm)	0.6	0.37 ~ 1.33

V_{dd} (V)

0.75

SiO₂

Si₃N₄

Si₃N₄

Al₂O₃

SiO₂

Table II. Optimized Spacer Materials for FOM

Fig. 3. R_{SD} components of NWFETs

1.

V_{dd} = 0.65

V_{dd}

(b)

. 0.85 \

L_{EXT} = 10 nr

with high-k spacers.

0.8

SiO₂

Si₃N₄

Al₂O₃

 Y_2O_3

SiO₂

0.85

Si₃N₄

Al₂O₃

Al₂O₃

 Y_2O_3

SiO₂

Fig. 2. The simulated $I_{\rm D}$ - $V_{\rm G}$ characteristics of NWFETs with different spacer dielectric materials.

Fig. 8. (a) f_T (b) CV/I for different operation condition and L_{EXT}. As V_{dd} and L_{EXT} decrease, low- κ spacers show outstanding performances.

(a)

Fig. 5. Electron concentration and resistivity comparison with different spacer materials.

increase

V_{dd} = 0.85 V

20

[fF/µm]

capacitance [0.1 0.2

0.5

호0.0

10 15 Dielectric constant

Fig. 7. Extracted parasitic overlap capacitances as a function of dielectric constant.