Subthreshold transport in mono- and multi-layered MoS₂ FETs

Fang Nan, Kosuke Nagashio and Akira Toriumi

Department of Materials Engineering, The University of Tokyo 7-3-1 Hongo, Tokyo 113-8656, Japan Phone: +81-3-5841-7161 E-mail: nan@adam.t.u-tokyo.ac.jp

Abstract

The subtreshold transport in exfoliated MoS₂ FETs is discussed. Temperature dependence of the subtreshold characteristics suggests that there are electrically active gap states. The defect density is one-order different between mono- and multi-layered MoS₂ FETs. In addition, conductance fluctuations in I_{ds} - V_{gs} curves have been observed only in mono-layered FETs. From those results, interlayer interactions in MoS₂ are discussed from the viewpoint of effective screening of defects inside MoS₂ layers by neighboring layers.

1. Introduction

Transition metal dichalcogenides have attracted much attention both in condensed matter physics (1, 2) and in ultimately scaled device research (3, 4). The mono-layer thickness of MoS₂ corresponds to 0.65 nm, which can work as a field-effect-transistor channel. Although the mobility is not so high compared to graphene FET, the off-current is definitely suppressed thanks to a sufficient energy band gap. Resultantly, MoS₂ FETs show a well-controlled subthreshold region. However, quite a few reports on the subthreshold transport in MoS₂ FETs have been reported. The objective of this work is to measure the subthreshold transport characteristic, and to discuss its difference between mono-and multi-layered MoS₂ FETs.

2. Experiments

 MoS_2 was mechanically exfoliated from natural MoS_2 . It is generally known that large size flakes are rarely obtained, and a couple of micrometer size sample on SiO₂/Si should be characterized. Raman measurement was carried out to determine the layer number. The SiO₂ thickness was 90 nm, and Si substrate was used for the gate electrode. The source and drain electrodes were Au/Ni evaporated in vacuum. *I-V* characteristics were measured in cryo-probing system.

3. Results and Discussion

Fig. 1 shows the subthreshold characteristics in multi-layered MoS_2 FET as a parameter of measurement temperature from 300 K to 50 K. Very sharp cut-off characteristics are observed, and the threshold voltage shifts to positively higher by lowering the temperature. The subthreshold swing (*S*-factor) determined from the slope in Fig. 2 is plotted as a function of temperature for several current levels in Fig. 2. According to the conventional semiconductor theory, *S*-factor should be in proportion to the measurement temperature. The field effect mobility was also estimated, but the sample shape was not well-defined. Therefore, the temperature dependence of the mobility is plotted in Fig. 2.

Furthermore, we measured mono-layered MoS₂ FET. The subthreshold *I-V* characteristics are shown in **Fig. 3**. *S*-factor is more degraded, and conductance fluctuations are observed at lower temperatures. This conductance wiggle was reproducible in a respective sample.

Fig. 1. Subthreshold transport characteristics in multi-layered MoS₂ FET as a function of measurement temperature (V_{ds} =0.1 V). A clear cut-off characteristic is observed even at 300 K.

Fig. 2. Measurement temperature dependence of subthreshold swing. Almost linear dependence is observed, which means the conventional device physics for the subthreshold characteristics can be applied for MoS_2 FET case as well. Temperature dependence of the normalized mobility by 300K result is also plotted, because absolute value was not well-defined due to the sample shape.

Fig. 3. Subthreshold transport characteristics in mono-layered MoS_2 FET (V_{ds} =0.1 V). At lower temperatures, reproducible conductance wiggles are observed. The peak and valley position seems to change systematically.

On the other hand, additional capacitance contribution to S factor is calculated from the temperature dependence of S factor. Through this analysis, $N_x \text{ cm}^{-2}$ is estimated both for multi- and mono-layered MoS₂. This is equivalent to the interface states density in the conventional MOSFET analysis (5), but it is not self-evident in MoS₂ FETs whether the interface states of MoS₂ on SiO₂ really respond to degraded S-factor or not. By the conventional analysis using

$$N_x = \frac{C_{ox}}{q} \left(S \frac{q}{k_B T} \frac{1}{\ell n 10} - 1 \right)$$

 N_x is roughly estimated to be ~5x10¹¹ cm⁻² and ~5x10¹² cm⁻² for multi-layered and for mono-layered case, respectively. Since the interface of MoS₂ on substrate SiO₂ should nominally be the same, we cannot simply assume N_x is the number density of interface states. We think that it is reasonable to consider that N_x difference comes from defects inside MoS₂. Suppose that defects of MoS₂ can communicate with channel electrons, but trapped carriers at defects are immobile in the channel. Here, we propose the effective screening model for defects in multi-layered MoS₂. We assume defects are distributed randomly in a single layer, and no correlation of defect sites between neighboring layers, as schematically shown in Fig. 4(a). Nevertheless, when one layer becomes conductive, defects in neighboring layers are affected through the screening effect and might not work as active N_x , even though areal defect density apparently increases in multi-layered case. In the mono-layer case, however, electrons are confined in a layer, should flow through the percolation path within the layer, as shown in Fig. 4(b).

This view explains not only N_x difference but also why conductance fluctuations in the subthreshold region are observed only in the mono-layered case. Namely, the conductance fluctuations originate from the percolation switch in mono-layered MoS₂ channel, which are marked by arrows.

Fig. 4. Schematic description of our model for understanding the subthreshold transport difference between mono- and multi-layered MoS₂ FETs. (a) In multi-layered case, defect in a layer can be effectively screened by neighboring conductive layers. So, N_x is mainly originated from MoS₂ inside. (b) Mono-layered MoS₂ channel model with the percolation path conduction, where colored area is conductive. Arrows indicate critical paths determining the total conduction. The connection bridge might work as the switch showing the conductance wiggles.

Finally, we discuss the temporal behavior of the drain current in mono-layered MoS₂. If the above-mentioned model is correct, we expect to see the random telegraphic type of signals caused by the critical point conduction due to the percolation switching. We carefully measured the drain current at fixed V_{ds} and V_{gs} in the subthreshold region. Fig. 5 shows Ids-time characteristics in the subthreshold region at 20 K, in which clear random telegraphic signals are observed. Since there should be a wide spectrum of time constant in N_x , note that long time constant switching can only be seen at 20 K. We have never seen them at higher temperatures or in multi-layered MoS₂. This fact is also consistent with our model. Practically, in order to reduce the noise in TMD channel, multi-layered one will be obviously appropriate.

Fig. 5. Temporal characteristics of I_{ds} at 20 K (a) V_{gs} = -11.4, and (b) V_{gs} =-11.2. Clear random telegraphic characteristics are observed. The pattern is dependent on V_{gs} very sensitively.

Although the present MoS_2 sample was not high quality one (the field effect mobility in mono-layered MoS_2 was about 5 cm²/Vsec at room temperature). But it is reported that MoS_2 has an amount of defects intrinsically (6), which should hamper the mobility improvement. The most advantageous point of MoS_2 , however, is not the mobility but atomically thin layer with a sufficient energy band gap. Therefore, to comply with requirements such as ultra-thin, small S, and high mobility, multi-layered MoS_2 will be more viable for stable operation in practical applications. This is quite different from the approach in graphene FET.

Conclusions

We have characterized both mono- and multi-layered MoS_2 FETs, focusing on the subthreshold transport. The poor subthreshold slope is mainly due to very thick SiO₂ thickness (90 nm). If we can reduce gate oxide thickness down to EOT=1 nm on multi-layered MoS₂, the subthreshold slope in MoS₂ FET will be below 70 mV/dec and becomes comparable to existing Si devices. Thus, multi-layered MoS₂ will be better to achieve more stable and less defective subthreshold and higher mobility transport in MoS₂ FETs.

References

- (1) K. S. Novoselov et al., PNAS **102** (2005) 10451.
- (2) B. Radisavljevic et al., Nat. Nanotech. 6 (2011) 147.
- (3) S. Kim et al., Nat. Comm. 3 (2012) 1011.
- (4) L. Young et al., Dig. Symp. VLSI Tech. (2014), p. 192.
- (5) W. Zhu et al., Nature Comm. **5** (2014) 3087.
- (6) S. McDonnel et al., ACS Nano. 8 (2014) 2880.