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Abstract
The effect of the interface electric field on the

non-local measurement setup is discussed both
theoretically and experimentally. We found that
the interface electric fields increase the spin po-
larization when the depletion region grows.
1. Introduction
One of the important issues of spintronics[1-3] is the spin
injection and detection between ferromagnet and semi-
conductor, which is sensitive to the interface properties.
In the last paper [4], we showed that, for the local mea-
surement setup, the electric field at the interface greatly
changes the magnetoresistance (MR) ratio depending on
the direction and the strength of the electric field. In
this paper, we discuss the effect of the interface electric
field for the nonlocal setup depicted in Fig.1. We found
that the interface electric field affects the MR ratio in a
different form from those of the local measurement setup.

2. Formulation
We introduce a quantum effect as the density-gradient
(DG) term [5] to the spin dependent chemical poten-
tials. The DG term is expressed by b∇2√ns/

√
ns with

b = h̄2/(2merq) and the density of carrier ns (s =↑, ↓,
∇ = ∂/∂z). The parameter rq changes depending on
physical environment (we take rq = 2 here) [5]. Similar
differential equations as those of the standard diffusion
theory are held by replacing the chemical potential by

that with the DG term, µ∗
±, such as, e
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(lsf is the spin diffusion length

lN or lF ).
The generalized drift-diffusion equations are solved de-

pending on the geometry of the nonlocal measurement
setup of Fig.1 by extending Ref.[3]. The chemical poten-
tials are described as
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where β is a spin polarization. A-G,G′′,G1 and G2 are
unknown coefficients to be determined by the bound-
ary conditions and the current conservation conditions.
ψF
bα± and JF

bα± are the quantum effects given by ψF
bα± =(
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bα± = 2(σ±/e)∇ψbα±, and JF

b± = 2(σN/e)∇ψb±. We
write ρ± = 2[1±β]ρF and ρN for the resistivity of the fer-
romagnet F and the semiconductor N . For the antipar-

allel case, we have µ
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σF (1∓β)e
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Current is obtained from Js = σs

e
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s

∂x with conductance

σ± = 1
2ρF (1∓β) = (1±β)

2 σF . Then the currents are ex-

pressed by

J
(I)
± = −1± β

2
JL ∓ C

eλF
e
− x

λF − JAb±(x), (8)

J
(II)
± = −1

2
JL ∓

[
E

eλN
e
− x

λN − F

eλN
e

x
λN

]
− JEb±(x), (9)

J
(III)
± = ∓ G′′

eλN
e
− x

λN − JG′′b±(x), (10)

J
(IV)
± =

JM
2

∓ G

eλN
e
− x

λN − JKb±(x), (11)

J
(V)
± = ∓

[
H

eλN
e
− x

λN − K

eλN
e

x
λN

]
− JHb±(x), (12)

J
(VI)
± = ∓ D

eλF
e
− x

λF − JBb±(x), (13)

J
(VII)
± = ∓

[
G1

eλN
e
− x

λN − G2

eλN
e

x
λN

]
− JG1b±(x), (14)

The geographical difference from Ref.[3] is that there is
a region (VII) in the present case. The same boundary
conditions on chemical potential and current at an inter-
face z = zα (α = L,R) are given by µ±(z

+
α )− µ±(z

−
α ) =

r±J±(zα) and J±(z
+
α ) = J±(z

−
α ). We also define rα± =

2rb[1 ± γα], rαp = [rα+ + rα−]/4 = rb, r
α
m = [rα− − rα+]/4 =

rbγ
α, rF = ρF l

F , rN = ρN l
N . The important quan-

tities here are rF ≡ ρF l
F and rN ≡ ρN l

N . After a
long straightforward calculation, the spin-dependent re-
sistance ∆R is obtained by
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The spin polarization P = J+−J−
J++J−

is expressed by
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FIG. 1: (a) Nonlocal setups. F (Region I and VI) shows a
magnetic electrode. Other parts consist of semiconductor(N).
Here, we consider the effects of the interface electric field
EN

L at the I-II and EN
R at the V-VI interface. (b) Diagram

of the chemical potential solutions. The nodes represent the
origins of the coordinate axes in the seven regions, and the
arrows indicate the positive x directions. (c) Band structure
at the interface between the regions F and N .
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FIG. 2: (a) ∆R and (b) P as functions of the tunneling
resistance rb and the interface electric field. E0 ≡ J/σF .
γL = γR = 0.5 lN = 1 µm, rN = 4.0× 10−9Ω m2, lF = 5 nm,
β = 0.46, rF = 4.5× 10−15 Ω m2.

where u = etN/λN , ν1 = {(1−2wM )(2+wR)u−wR/u}/4,
ν2 = {(1 − 2wM )(2 − wR)u + wR/u}/4, ν3 = {(1 +
2wM )(2+wR)u−wR/u}/4, ν4 = {(1+2wM )(2−wR)u+
wR/u}/4. Moreover, Bα

p = [rN + rαp ](1−β2)+ rF , B
α
m =

[rN−rαp ](1−β2)−rF , cα = rFβ+r
α
m(1−β2) for α = L,R,

and Θ1 = BR
m/b5(ν2B

L
m/b2+ν4B

L
p b2)−BR

p b5(ν1B
L
m/b2+

ν3B
L
p b2). uA = EN

L /ra and uB = EN
R /ra are the inter-

face electric field for the two interfaces. These formula
are reduced to those of Ref.[3] when there is no electric
field. We can see that EN

L and EN
R differently affect P

and ∆R. This analytical form shows that, as the in-
terface electric fields EN

L and EN
R increase, P decreases.

This is the opposite result of the local measurement of
Ref. [4].
Fig. 2 shows the result of numerical calculations as a

function of the electric field (EN
L −EN

R ) and the tunneling
resistance rb for ∆R and P . We can see an increase of P
at the left side where the electric field is negative. These
are the results of the additional terms in Eq.(15) and
Eq.(16).

4. Experiments
We fabricated four-terminal devices for Hanle-effect mea-
surements, as shown in Fig. 3(a) for two types of different
area configurations: [A] SL = 50µm2, SR = 200µm2

and tN = 2050 nm, [B] SL = 40µm2, SR = 50µm2

and tN = 1250 nm. The CoFe/MgO is patterned on
a phosphorus-doped (∼ 2 × 1019 cm−3) (100) textured
Si of an insulator (SOI) substrate[4,6]. Fig. 3(b)(c) show

MgO

CoFe

1
2

4

tN

FM1 FM2
3

e-
V+

(a)
-2 -1 0 1 2

0.00

0.05

0.10

0.15

0.20

77K
(c)

VFM1[V]
-2 -1 0 1 2

0.00

0.05

0.10

0.15

0.20

77K
(b)

VFM1[V]

∆R
 [ Ω

]

Sample[A] Sample[B]

FIG. 3: (a) Four-terminal devices used in the experiment.
(b)(c) Measured ∆R as a function of the junction bias for the
two samples with different MgO thickness t. The red, green
and blue dots show data for t = 1.5, 1.6, 1.8nm for the sample
[A] and t = 1.3, 1.5, 1.8nm for [B].
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FIG. 4: Calculated ∆Rs as a function of the interface electric
field for (a) sample [A] and (b) sample [B]. As suggested in
Fig.2, ∆R for negative interface electric field is larger than
that of the positive side. These are the results of the interface
electric field (See the 2nd term of Eq.(15)). γL = γR.

∆R for different MgO thickness (t) (t = 1.5, 1.6, 1.8nm
for the sample [A] and t = 1.3, 1.5, 1.8nm for [B]). We
can see that ∆R of the sample [B] is more sensitive to
the MgO thickness than that of the sample [A]. This
is because tN of the former is shorter than the latter.
5. Comparison with experiments

Fig. 4 shows calculated ∆R as a function of the interface
electric field for the two samples. The change of the MgO
thickness of Fig 4 can be taken into account in the calcu-
lation by changing the interface resistance rb. Because of
the additional terms in Eq.(15), ∆R for negative inter-
face electric field is larger than that of the positive side.
Physically, the enhancement comes from the extension of
the depletion region.

6. Conclusions
We have investigated the effect of the interface electric
field on the non-local measurement setup both theoreti-
cally and experimentally. It is found that the interface
electric fields affect the spin polarization and resistance
change such that the spin polarization is enhanced when
the depletion regions grows.
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