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Abstract 

We investigate magnetic properties of a 100 

nm-diameter CoFeB-MgO magnetic tunnel junction 

with perpendicular magnetic easy axis. We measure the 

in-plane magnetic field angle dependence of homodyne 

detected ferromagnetic resonance (FMR) spectra and 

junction resistance. The obtained resonant frequency of 

FMR is anisotropic in its in-plane angle dependence. 

The in-plane anisotropy is observed also in resistance 

versus magnetic field curves. 

 

1. Introduction 

CoFeB-MgO magnetic tunnel junctions (MTJs) with 

perpendicular magnetic easy axis are important building 

blocks for high performance non-volatile memory and 

spintronics-based VLSI [1]. It is important to establish 

evaluation methods of magnetic properties in nanoscale 

MTJs for further understanding and improvement of their 

characteristics. In this work, homodyne detected ferromag-

netic resonance (FMR) and junction resistance R are uti-

lized to characterize magnetic properties of a nanoscale 

MTJ with perpendicular magnetic easy axis [2,3]. 

 

2. Experimental 

A stack structure, Ta(5)/ Pt(5)/ [Co(0.4)/ Pt(0.4)]6/ 

Co(0.4)/ Ru(0.42)/ [Co(0.4)/ Pt(0.4)]2/ Co(0.4)/ Ta(0.3)/ 

Co18.75Fe56.25B25(1)/ MgO(1.3)/ Co18.75Fe56.25B25(1.8)/ Ta(5)/ 

Ru(5) (numbers in parenthesis are nominal thickness in 

nanometers), is deposited by dc/rf magnetron sputtering. 

The stack is processed into a circular MTJ with 100 nm 

diameter on a coplanar waveguide by electron beam li-

thography and Ar ion milling. The MTJ is annealed at 

300oC in vacuum (10-6 Torr) for 1 hour. The two CoFeB 

layers have perpendicular magnetic easy axis, and the top 

layer is the free layer. Synthetic ferrimagnetic (SyF) struc-

ture is adopted as a reference layer to suppress stray field 

acting on the free layer. Tunnel magnetoresistance ratio and 

resistance-area product are 84% and 13 m2, respectively. 

The magnetization configuration at zero magnetic field is 

set to antiparallel configuration. By sweeping frequency f 

of rf signal with power of -25 dBm, FMR spectra are 

measured by dc component of reflected voltage as a func-

tion of the angle H of in-plane magnetic field Hin, where 

H is measured from the direction along coplanar wave 

guide. We measure R as a function of H by sweeping the 

amplitude of Hin. 

 

3. Results 

Figure 1 shows FMR spectra at various H from 0o to 

360o with 30o step under 0Hin = 100 mT, where 0 is the 

permeability of free space. The spectra show an-

ti-symmetric Lorentzian lineshape, indicating that the FMR 

is induced by electric field-modulation of magnetic anisot-

ropy and/or field-like-torque in the MTJ [4]. The resonant 

Fig. 1 Homodyne detected FMR spectra as a function of 

in-plane magnetic field angle H at in-plane magnetic field 

0Hin = 100 mT. 
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frequency fr takes different value at different H, and its 

variation is about 0.1 GHz, suggesting the presence of 

in-plane anisotropy in the device. 

To confirm the presence of the anisotropy, we measure 

R-Hin curves as a function of H. Figure 2 shows a typical 

R-Hin curve obtained at H = 0o. The change of R reflects 

the change of the relative angle  between the magnetiza-

tions in the two CoFeB layers. We observe slightly differ-

ent shape of R-Hin at different H (not shown), which indi-

cates that the effective anisotropy field HK1
eff depends on H. 

We analyze R-Hin curves by using the energy minimum 

condition of magnetostatic energy as well as the relation-

ship between R and , and obtain the H dependence of 

HK1
eff in the free layer. The dependence possesses two-fold 

symmetry, showing that the origin of the dependence is 

related to the shape anisotropy of the device. The H de-

pendence of fr is explained by substituting HK1
eff into reso-

nant condition for FMR. The results indicate that both FMR 

and R-Hin measurements are useful to evaluate magnetic 

properties of MTJs at reduced dimensions. 

 

4. Conclusion 

   We measure the in-plane magnetic field angle depend-

ence of homodyne detected FMR spectra and junction re-

sistance of the CoFeB-MgO MTJs with SyF reference layer. 

We find that resonant frequency of FMR and shapes of 

junction resistance versus magnetic field curves depend on 

the in-plane magnetic field direction, which is explained by 

the angle dependent effective magnetic anisotropy in the 

device. 
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Fig. 2 In-plane magnetic field dependence of junction resistance 

R at H = 0o. 
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