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Abstract 

We grew epitaxial layers on 4H-SiC C-face sub-

strates with 1° off-angle and studied about the stacking 

faults (SFs). We found that 3C-inclusion, 8H-SF and 

(3,5)-SF were generated in grown epitaxial layers. These 

SF densities were not changed by varying the C/Si ratio 

and only 3C-inclusion density was decreased by in-situ 

etching. It is thought that 3C-inclusion was caused by 

3C-SiC particles fallen on substrates before and during 

growth. Moreover, 8H- and (3,5)-SF densities were 

found to correlate with shallow pit density. 

 

1. Introduction 

4H-SiC is expected to be widely used for power devices 

because of certain physical properties such as a wide 

bandgap and high thermal conductivity. Recently, the 

trench structure devices have been necessary for reducing 

the on-resistance. However, these devices have anisotropy 

of device properties such as channel mobility and threshold 

voltage due to use of substrates with large off-angle such as 

8° and 4° [1]. Moreover, reliability of these devices should 

be improved [2]. It has been reported that lowering the 

off-angle is effective for suppressing the anisotropy of de-

vice properties [1] and the reliability is improved by using 

C-face substrates [2]. For this reason, 4H-SiC homoepitaxi-

al growth on C-face substrates with lower off-angle than 4° 
is potential candidate to improve the trench structure device 

properties. 

For device applications of the C-face epitaxial layers 

with lower off-angle, decrease of background carrier con-

centration and stacking fault (SF) density is extremely im-

portant. Concerning background carrier concentration, for 

example, the order of 10
14 

cm
-3

 is required for 3.3 kV 

MOSFET because the requirement for the drift layer carrier 

concentration is around 3×10
15

 cm
-3

. It has been reported 

that the background carrier concentration of C-face epitaxi-

al layers can be reduced to the order of 10
14 

cm
-3

 by in-

creasing C/Si ratio due to site competition effect even 

though residual nitrogen incorporation of C-face epitaxial 

layers is more intense than that of Si-face epitaxial layers [3, 

4, 5]. Concerning SF, the negative effects on device proper-

ties are increased by lowering the off-angle because of in-

crease in the area of SF. However, there is no report about 

SF in the C-face epitaxial layers with lower off-angle. 

In this study, we grew epitaxial layers on 4H-SiC 

C-face substrates with 1° off-angle and investigated SF 

densities for the C/Si ratio and in-situ etching time. More-

over, we characterized the SF. 

 

2. Experimental Procedures 

Epitaxial growth was performed on 4-inch 4H-SiC 

C-face substrates with 1° off-angle in a horizontal hot-wall 

CVD system. H2 was used as the carrier gas, and SiH4 and 

C3H8 were used as the precursors. Growth rate was 3.5 - 4.5 

μm/h. Both temperature of in-situ H2 etching and growth 

were 1725 °C. We varied the C/Si ratio from 0.8 to 2.0 in 

order to confirm a decrease of the background carrier con-

centration and to investigate effects on the SF density. In 

addition, in-situ etching time was varied from 0 min to 60 

min because in-situ etching might affect the SF density due 

to removal of particles on substrates. 

The thickness and background carrier concentration 

were measured using FT-IR and C-V measurements, re-

spectively. Surface morphology was characterized using 

AFM. The defect characterization was performed using 

SEM, confocal microscope with a differential interference 

contrast (CDIC) system and PL. 

 

3. Results and discussion 

   Firstly, we studied about the uniformity of the thickness 

and carrier concentration, and surface morphology of 

4-inch C-face epitaxial layers with 1° off-angle to confirm 

that these properties are acceptable for device applications. 

There was little change in these properties when the C/Si 

ratio and in-situ etching time were varied, and all epitaxial 

layers have a good uniformity and smooth surface. The 

typical uniformity of the thickness and carrier concentration 

was 1-2% and 10-15% (σ/mean), respectively. RMS values 

were less than 0.2 nm and step bunching was not generated. 

It indicates that surface steps of C-face hardly bunch even 

when the off-angle is low at 1° due to its low surface ener-

gy [4]. 

   Secondly, we confirmed the decrease of the background 

carrier concentration, and investigated effects on the SF 

density by varying the C/Si ratio. In this experiment, in-situ 

etching time was 10 min. With increasing the C/Si ratio 

from 0.8 to 2.0, the background carrier concentration de-

creased from 2.1×10
15 

cm
-3

 to 5.2×10
14 

cm
-3

 supposedly due 

to the site competition effect [5]. We consider that this 

background carrier concentration grown at the C/Si ratio of 

2.0 is acceptable for 3.3 kV MOSFET. In these epitaxial 

layers, we observed three types of SFs identified as 
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3C-inclusions, 8H-SF and (3,5)-SF from PL measurements 

[6]. We found that these SF densities were not affected by 

the C/Si ratio. 3C-inclusion density was less than 0.2 cm
-2

 

and each 8H- and (3,5)-SF densities were less than 0.1 cm
-2

 

regardless of the C/Si ratio. It has been reported that trian-

gle defects, which might be some kind of SFs, frequently 

generate at too high C/Si ratio [7]. It seems that the SF den-

sity exponentially increases if the C/Si ratio increases to 

over 2.0. At least, these SF densities were not changed in 

this C/Si ratio range from 0.8 to 2.0. 

Thirdly, we investigated effects of varying the in-situ 

etching time on the SF density. The C/Si ratio was 2.0 to 

control the background carrier concentration to minimum 

level. 3C-inclusion, 8H-SF and (3,5)-SF were observed also 

in this experiment. Fig. 1 shows these SF densities for the 

in-situ etching depth or in-situ etching time. Note that these 

SF densities are higher than the densities of the experiment 

of varying the C/Si ratio shown in the last paragraph due to 

a difference of chamber conditions and substrate quality 

depending on boule. The in-situ etching depth was esti-

mated from the etching rate of epitaxial layers because it is 

difficult to directly measure the etching depth of substrates. 

3C-inclusion density approximates 0.5 cm
-2

 when the 

in-situ etching depth is over 0.4 μm, though the density is 

1.6 cm
-2

 when the depth is 0.1 μm as shown in Fig. 1. We 

found that the 3C-inclusion density is decreased by in-situ 

etching. In contrast, the 8H- and (3,5)-SF densities are ap-

proximately 0.5 cm
-2

 regardless of the in-situ etching depth. 

Therefore, it is obvious that 8H- and (3,5)-SF densities are 

not affected by in-situ etching. 

Fig. 1 SF densities for the in-situ etching depth or in-situ etching 

time. 

 

   Lastly, we researched the origin of these SFs. We found 

that there was a particle at a starting point of 3C-inclusions 

by using SEM measurements. Other papers have reported 

that the cause of 3C-inclusions is 3C-SiC particles in 

Si-face epitaxial layers with large off-angle [8, 9]. It sug-

gests that the cause of 3C-inclusions is 3C-SiC particles 

regardless of the off-angle and the polar face. It is thought 

that the 3C-inclusion density in Fig. 1 increases in the case 

of the in-situ etching depth of 0.1 μm due to lack of remov-

al of particles on substrates before growth. Moreover, it 

seems that particles fall from somewhere, such as the sus-

ceptor, on substrates during growth because the 

3C-inclusion density is constant at the in-situ etching depth 

of over 1 μm. In contrast, we found that 8H- and (3,5)-SF 

had a shallow pit not a particle at their starting point by 

using CDIC. It is thought that the origin of 8H- and 

(3,5)-SF is the shallow pit. Then, we investigated relation-

ship between the 8H- and (3,5)-SF densities and the shal-

low pit density as shown in Fig. 2. It is obvious that 8H- 

and (3,5)-SF densities correlate with shallow pit density. 

We found that it is important to decrease the shallow pit 

density for decreasing the 8H- and (3,5)-SF densities. More 

details about the origin of 8H- and (3,5)-SF will be pre-

sented at the conference. 

Fig. 2 Relationship between the 8H- and (3,5)-SF densities and 

the shallow pit density. 

 

4. Conclusions 

   We grew epitaxial layers on 4H-SiC C-face substrates 

with 1° off-angle and studied about the SFs. We found that 

3C-inclusion, 8H-SF and (3,5)-SF were generated in grown 

epitaxial layers. These SF densities were not changed by 

varying the C/Si ratio. The 3C-inclusion density was de-

creased, and 8H- and (3,5)-SF densities were not affected 

by in-situ etching. It is thought that the origin of 

3C-inclusion is 3C-SiC particles fallen on substrates before 

and during growth. In addition, we found that it is im-

portant to decrease the shallow pit density for decreasing 

the 8H- and (3,5)-SF densities. 
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