Strain Effects on Monolayer MoS$_2$ Field Effect Transistors

Lang Zeng1,*, Zheng Xin1,2, Pengying Chang1,2 and Xiaoyan Liu1,*

1 Key Laboratory of Microelectronic Devices and Circuits (MOE), Institute of Microelectronics, Peking University, Beijing, 100871, China
2 School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China

Email: Langzeng@ime.pku.edu.cn, xyliu@ime.pku.edu.cn

Abstract

In this work, the strain effect on monolayer MoS$_2$ field effect transistors is investigated with DFT calculation and quantum transport simulation. DFT calculation reveals that the tensile strain decreases effective mass while compressive strain increases effective mass. However, quantum transport simulation shows smaller effective mass does not always respond to better performance. This is because for FETs at ultimate scaling region, suppression of off-state tunneling current is the biggest concern for device design.

1. Introduction

The continuous scaling of field effect transistors (FETs) in transport direction also demands corresponding scaling in device vertical direction for enough gate controllability [1]. This fact explains why nowadays two dimensional (2D) materials have obtained so much attention [2]. 2D materials can provide atomic layer thickness as well as the elimination of body thickness fluctuation [3]. Among 2D materials, monolayer MoS$_2$ stands out due to its large intrinsic energy gap and moderate mobility. There exists much theoretical and experimental work on monolayer MoS$_2$ FETs [3-5]. However, a comprehensive investigation on strain effect on MoS$_2$ FETs at ultimate scaling region to elucidate device design concerns is still highly demanded.

In this work, we present a DFT calculation and quantum transport simulation combined work that reveals strain effects on effective mass and device performance at scaling limit.

2. Simulation Methods

The atomic structure of monolayer MoS$_2$ is shown in Fig. 1. Density functional theory (DFT) approach with ultra-soft pseudo-potential (USPP) implemented in CASTEP package is employed to perform the calculation [6]. Exchange and correlation energy is approximated by generalized gradient approximation (GGA) with PW91 [7]. The energy cutoff for charge density is set to be 600 eV. Periodic boundary condition is used to relax all the structures. Biaxial strain is considered in the calculation. Geometric optimization is completed until the maximum force is less than 0.02 eV/Å.

Non-equilibrium Green’s function method with effective mass Hamiltonian is employed for the quantum transport simulation. Double gate FET structure is used and is shown in Fig. 2. The Equilibrium Oxide Thickness (EOT) of gate dielectric is 1 nm, and the gate length is chosen to be 10 and 5 nm. The source (drain) is heavily doped with a doping concentration of 8.5×10^{17} m$^{-2}$, and its length is L$_g$ (L$_d$) = 10 nm in simulation. The channel is intrinsic, and its length is equal to the gate length. The thickness of monolayer MoS$_2$ is 0.8 nm and electron density is assumed distributed averagely along vertical direction. Poisson equation is solved self-consistently with the Schrödinger equation over the transport direction.

3. Results and Discussions

The electronic structure of monolayer MoS$_2$ with different strain conditions by DFT calculation is shown in Fig. 2. It can be seen that tensile strain (up to 3%) can push down the conduction band minima while keep it at K point. The 1% compressive strain can push up the conduction band minima as well as 3% compressive strain shift it away from K point. The extracted band gap and effective mass along KM and KΓ direction is shown in Table I. Tensile strain decreases both band gap and effective mass, and compressive strain increases them. It is worth noting that our calculation results agree well with self-consistent GW$_0$ (scGW$_0$) calculation [3].

The simulated output and transfer characteristic curve for monolayer MoS$_2$ FETs with L$_g$ = 10 nm and 5 nm is shown in Fig. 3 and 4. The off-current of 100 na/μm is achieved by tuning gate workfunction. It should be noted that: (i) For suppression of strong tunneling effect for L$_g$ = 5 nm, a low work-function metal should be chosen thus lead to small on-current. (ii) For L$_g$ = 10 nm, the tensile strain with smaller effective mass lead to higher on-current. While for For L$_g$ = 5 nm, the compressive strain with larger effective mass lead to higher on-current. The off-state current density spectrum is shown in Fig. 5 and 6. Although the off-current is pinned to 100 na/μm, their distributions for L$_g$ = 10 and 5 nm is quite different.

The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) for L$_g$ = 10 and 5 nm with different strain conditions is shown in Fig. 7 and 8. It is observed that SS and DIBL for L$_g$ = 10 nm is almost independent of strain conditions while they have strong dependence on strain conditions for L$_g$ = 5 nm.

The gate capacitance C_g and intrinsic delay for L$_g$ = 10 and 5 nm with different strain conditions is shown in Fig. 9 and 10. It is surprisingly that the intrinsic delay for L$_g$ = 5 nm is larger than that of 10 nm, which contradicts with ref. [9]. The reason is two folded: (i) Our gate dielectric EOT is 1 nm while in ref. [9] is 0.47 nm. The relatively large EOT cannot exploit the advantage of 5 nm short channel length. (ii) The effective mass in our simulation is much smaller than that of ref. [9] (0.579 m$_e$). This indicates for ultimate short channel devices, a careful device design should be taken for suppression of tunneling off-current and better performance.

4. Conclusions

This work reveals that compressive strain increases the effective mass of monolayer MoS$_2$ and tensile strain decreases effective mass. For L$_g$ = 10 nm devices, smaller effective mass correspond to better performance. However, for L$_g$ = 5 nm, a careful and optimized device design should be made to take advantage of smaller effective mass.

Acknowledgements

This work is supported by NKBRP 2011CBA00604, NSFC Grant No. 61306104 and China Postdoctoral Science Foundation Grant No.2013M540018.

References

- 48 -
Fig. 1 Sketch of atomic structure of monolayer MoS$_2$ (a) and (b). Also shown is a diagram of monolayer MoS$_2$ double gate FETs.

Table. I Lattice constant, energy gap, effective mass along KM and ΓK directions for different strain conditions.

<table>
<thead>
<tr>
<th>Strain (%)</th>
<th>a (Å)</th>
<th>E_g (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>3.07</td>
<td>1.76</td>
</tr>
<tr>
<td>-1</td>
<td>3.13</td>
<td>1.83</td>
</tr>
<tr>
<td>0</td>
<td>3.16</td>
<td>1.71</td>
</tr>
<tr>
<td>1</td>
<td>3.20</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>3.26</td>
<td>1.07</td>
</tr>
</tbody>
</table>

m_e (m$_0$) for KM:
- 0.42
- 0.37
- 0.34
- 0.32
- 0.30

m_h (m$_0$) for KM:
- 26
- 78
- 98
- 90
- 21

ΓK:
- 0.43
- 0.37
- 0.34
- 0.32
- 0.29

Fig. 2 The electronic structure of monolayer MoS$_2$ with different strain conditions. The tensile strain (up to 3%) can push down the conduction band minima while keep it at K point. The 1% compressive strain can push up the conduction band minima as well as 3% compressive strain shift it away from K point.

Fig. 3 The transfer (left) and output (right) characteristic curves for $L_g = 10$ nm. It can be seen that 3% tensile strain has best performance.

Fig. 4 The transfer (left) and output (right) characteristic curves for $L_g = 5$ nm. It can be seen that -3% compressive strain has best performance.

Fig. 5 Current density spectrum for off-state ($V_g = 0$ V and $V_d = 0.5$ V) with $L_g = 10$ nm.

Fig. 6 Current density spectrum for off-state ($V_g = 0$ V and $V_d = 0.5$ V) with $L_g = 5$ nm.

Fig. 7 Sub-threshold slope for $L_g = 10$ and 5 nm with different strain conditions.

Fig. 8 Drain induced barrier lowering for $L_g = 10$ and 5 nm with different strain conditions.

Fig. 9 Gate capacitance C_g for $L_g = 10$ (left) and 5 nm (right) with different strain conditions.

Fig. 10 Intrinsic delay for $L_g = 10$ and 5 nm with different strain conditions.