Rectifying Characteristics of Sol-gel derived TiO\textsubscript{x} thin films for 1D-1R Resistance Switching Memory Applications

Jang-Han Kim, Ki-Hyun Nam, Tae-Jun Ha, Won-Ju Cho and Hong-Bay Chung

Kwangwoon Univ., Department of Electronic Materials Engineering, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701, Korea, Phone: +82-2-940-5165, E-mail: hbchung@kw.ac.kr

Abstract

We demonstrated a sol-gel processed Ti/TiO\textsubscript{x}/Pt diode for alleviation of the sneak current path in cross point resistive switching memory array. Owing to asymmetric schottky barriers at the Ti/TiO\textsubscript{2} (0.13 eV) and the TiO\textsubscript{x}/Pt (0.57 eV) interface, a high current density (>102 A/cm2) and an on-off ratio (>104) were achieved. By stacking the Ti/HfO\textsubscript{2}/Pt unipolar resistive memory component on the Ti/TiO\textsubscript{x}/Pt diode for 1D-1R structure, we could significantly reduce the read disturbance from unselected cell.

1. Introduction

Recently, a resistive switching random access memory (ReRAM) based on reversible resistance change in transition metal oxides, such as HfO\textsubscript{2} and ZnO, has been intensively investigated due to excellent scalability, high density, simple structure, low-power consumption. However, a read disturbance owing to crosstalk among neighboring cells is a serious problem for application of high density memory array. Therefore, the unit cell of ReRAM required a selector to prevent undesirable crosstalk. The one diode and one resistor (1D-1R) structures with a high forward current density are used to alleviate the sneak current path and low thermal budget [1].

In this paper, we demonstrated the rectifying characteristics of Ti/TiO\textsubscript{x}/Pt diode fabricated by sol-gel spin coating of TiO\textsubscript{2}. Among the various techniques for oxide thin films deposition, the sol-gel process has attracted a lot of attention because of simplicity, cost effectiveness and minimum plasma damage. The rectifying characteristic of sol-gel based TiO\textsubscript{2} diode with sputter based TiO\textsubscript{2} diode was compared. We demonstrated that the read current in 1D-1R structure consists of sol-gel processed TiO\textsubscript{2} diode and HfO\textsubscript{2} resistive memory was considerably improved.

2. Experimental

As a starting material, the p-type Si (100) wafers with a 300-nm thick thermal oxide are used. The Ti and Pt layers for bottom electrode (BE) are sequentially deposited by 5-nm and 50-nm thick, respectively, using an electron-beam evaporator. And then, the sol-gel solution for TiO\textsubscript{2} thin film is prepared from SYM-TI05 solution (Kojundo Chemical Lab., 0.5 m/L). The TiO\textsubscript{x} solution was diluted with the spin coating of TiO\textsubscript{x}. Among the various techniques for fabricating the Ti/TiO\textsubscript{x} structural diode devices, we could significantly reduce the read disturbance from unselected cell.

Disturbance from unselected cell. The low resistance state (LRS) current (at 1/2V Read, cause the sneak current path) in the unselected cells was due to oxygen deficient state at TiO\textsubscript{2}/Pt interface generates Ti3+, and these Vo act as donor [2]. Therefore, the Fermi level of TiO\textsubscript{2} become closer to the conduction band when the increasing of the V\textsubscript{o}. As a result, SBH at TiO\textsubscript{2}/Pt interface is decreased, so the reverse current in sputtered TiO\textsubscript{2} diode is increase.

Carried out to remove the solvent from the solution-deposited high-k films. The dried substrates were annealed at 600 °C in a conventional furnace in the oxygen ambient for 30 min. The top electrode (TE) with a size of 250 × 160 μm2 was formed by Ti deposition and lift-off processes for fabricating the Ti/TiO\textsubscript{x}/Pt structural diode devices. In order to compare with sputtered TiO\textsubscript{2} diode, TiO\textsubscript{2} films were deposited by rf sputtering onto Pt BE at 75 W, Ar 20 sccm, 3 mtorr followed by annealed at 600 °C in the oxygen ambient. For the 1D-1R memory cell structure, the Ti/HfO\textsubscript{2}/Pt unipolar resistive memory component was stacked on the the Ti/TiO\textsubscript{x}/Pt diode and the memory behavior were measured.

3. Results and Discussion

Fig. 1 shows the rectifying characteristics of Ti/TiO\textsubscript{x}/Pt diodes. The asymmetrical current density vs. applied voltage (J-V) was due to the difference schottky barrier height (SBH) at the Ti/TiO\textsubscript{x}(TiO\textsubscript{2}) and TiO\textsubscript{x}(TiO\textsubscript{2})/Pt interfaces. It is worth to note that the sputter based Ti/TiO\textsubscript{x}/Pt diodes showed a lower forward current, higher leakage current and poor ideality factor (η).

Fig. 2 shows the temperature-dependent schottky fitting of both devices in forward (a) and reverse (b) current measured from room temperature to 125 °C. The extracted SBH is estimated Φ\textsubscript{Ti/TiO\textsubscript{x}} = 0.13 eV and Φ\textsubscript{TiO\textsubscript{x}/Pt} = 0.57 eV at each interface in sol-gel Ti/TiO\textsubscript{x}/Pt diode. On the other hand, Φ\textsubscript{Ti/TiO\textsubscript{2}} = 0.16 eV and Φ\textsubscript{TIO\textsubscript{2}/Pt} = 0.46 eV for sputtered Ti/TiO\textsubscript{2}/Pt diode. The difference of SBH is larger in sol-gel diode, as shown in insets. That is the reason why the high on-off ratio was achieved in sol-gel TiO\textsubscript{2} diode (>104 in sol-gel diode, >105 in sputtered diode at ±2 V).

In order to indentify the effect of oxygen vacancy (V\textsubscript{o}), X-ray photoelecetron spectroscopy (XPS) was measured as shown in the Fig. 3(a, b). The core level spectra of O 1s can be deconvoluted into two peaks corresponding to lattice oxygen (O-Ti) and non-lattice oxygen (V\textsubscript{o}). As shown in Fig. 3(a), the concentration of non-lattice oxygen at TiO\textsubscript{2}/Pt interface was increased in sputtered TiO\textsubscript{2} diode. The oxygen deficient state at TiO\textsubscript{2}/Pt interface generates Ti3+, and these V\textsubscript{o} act as donor [2]. Therefore, the Fermi level of TiO\textsubscript{2} become closer to the conduction band when the increasing of the V\textsubscript{o}. As a result, SBH at TiO\textsubscript{2}/Pt interface is decrease, so the reverse current in sputtered TiO\textsubscript{2} diode is increase.

Fig. 4 shows the I-V characteristics of 1D-1R memory cell. The low resistance state (LRS) current (at 1/2V\textsubscript{Read}, cause the sneak current path) in the unselected cells was
largely suppressed in 1D-1R structure. This is because the sneak current through the unselected cells was effectively blocked by sol-gel TiO\textsubscript{x} oxide diode.

4. Conclusions

We reported a high on-off ratio and a stable rectification property in sol-gel processed Ti/TiO\textsubscript{x}/Pt structure diode. The rectifying property of sol-gel processed TiO\textsubscript{x} diode is better than that of sputtered TiO\textsubscript{2} diode. The oxygen vacancies at TiO\textsubscript{x}/Pt interface play important roles to reduce the reverse leakage current. By stacking the HfO\textsubscript{2} unipolar resistive memory cell on the sol-gel processed Ti/TiO\textsubscript{x}/Pt diode, the read disturbance from unselected cell was significantly reduced. Using the simple and cost-effective sol-gel processed TiO\textsubscript{x} diode device can make a high density memory array.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2010-0024000).

References