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Abstract 

The reported neural network realizes Learning Vec-

tor Quantization (LVQ) with high flexibility for different 

applications. It is based on a hardware/software co-de-

sign concept for on-chip learning and recognition and de-

signed as a SoC in 180nm CMOS. The time consuming 

nearest Euclidean distance search in the LVQ algo-

rithm’s competition layer is efficiently implemented as a 

pipeline with parallel p-word input. Since neuron num-

ber in the competition layer, weight values, input and 

output number are scalable, the requirements of many 

different applications can be satisfied without hardware 

changes. Classification of a d-dimensional input vector is 

completed in ⌈𝒅/𝒑⌉ + 𝑹  clock cycles, where R is the 

pipeline depth. Adjustment of stored reference feature 

vectors (FV) during learning is done by the embedded 32-

bit RISC CPU, because this operation is not time critical. 

 

1. Introduction 

Since the usage of hardware neural networks (HWNN) 

has remained limited in practical applications, they have be-

come less appealing than they were initially. In this context, 

adaptability to different applications in addition to high pro-

cessing speed is a desired feature, which can help to increase 

the practical popularity of HWNNs. A promising HWNN 

concept for pattern recognition is the Learning Vector Quan-

tization (LVQ), which was introduced by T. Kohonen [1]. 

Highly-reliable digital-circuit implementations have been 

designed previously in [2-3]. On the other hand, analog-cir-

cuit implementations lack precision, but can be made much 

smaller and have less power consumption [4]. 

In this research, the basic LVQ algorithms, namely, 

LVQ1 is implemented on a SoC platform. Learning in the 

LVQ algorithm is realized by modifying the values of feature 

vectors (FV) in accordance with a distance function, usually 

the Euclidean distance. The neuron, whose weight vector is 

most similar to the input, called winner, is adjusted towards 

the input. Classification after the learning is based on a 

neighborhood function i.e. the classifier assigns the same 

class label to all samples that have the same closest FV. 

 

2. Nearest-Distance-Search Pipeline with Parallel P-

word Input Architecture (PPPI) 

A number n of d-dimensional FVs (wi) are assumed to be 

placed into the hidden neurons. Several FVs are normally 

assigned to the same class representing a Voronoi region. An 

input vector x is decided to belong to the class to which the 

nearest wi belongs based on the Euclidean distance function 

as shown in (1), where the root operation need not be com-

puted for finding the minimal distance. 

 

c = arg min{ ∑ √(x − wij)
2

𝑛

𝑖=0,𝑗≤𝑑

}    (1)  

 

The minimal distance can be found in O(dn) time for a 

d-dimensional space and the corresponding search operation 

is executed using a pipeline with parallel p-word input 

(PPPI) architecture, as shown in Fig.1. The pipeline can in 

parallel accept p dimensions in each clock cycle. The d-di-

mensional input vector and the reference FVs are placed into 

p SRAM blocks in the form of m partial vectors ( 𝑚 =
⌈𝒅/𝒑⌉: the smallest integer not less than d/p). As a result, for 

flexibly satisfying the requirements of different applications, 

vector dimension d and FV number n can be set to arbitrary 

values by the on-chip processor. The signal “Next”, which is 

asserted when the address of the partial input vector is equal 

to m, distinguishes the distance calculation for two different 

vectors. This means, that number and dimension of input 

vectors or FVs are freely user controllable in this design. The 

partial-vector storage and the “Next” signal mainly contrib-

ute to the flexibility in the PPPI itself. The winner signal in 

Fig.1 is a load signal for the address of the winner FV. After-

wards, the class label has to be calculated by the embedded 

processor for determining the classification result, during 

both learning and recognition processing. 

The minimal distance can be found in m+R clock cycles, 

where R is the pipeline depth, except for the first pipeline 

register bank in Fig.1. Due to the pipeline architecture, the 

complexity for the recognition in LVQ is not a linear func-

tion of m (m>1). In this work, the PPPI architecture thus en-

ables the time consuming nearest-distance search operation 

even when applications need high dimensional vectors. 
 

3. SoC for Learning and Recognition by LVQ 

The learning processing of the basic LVQ1 is defined by 

equations (2) and (3), which are used to adjust FVs and class 

 
Fig. 1 PPPI architecture for a LVQ neural network. Input layer and 
neurons are p SRAM arrays for the storage. The “Next” signal is an 
R clock-delayed signal. The multiplexer is used to separate the input 
vectors. 
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boundaries. Suppose x(t) and wc(t) represent sequences of 

training vectors and winner FVs in the discrete-time domain, 

respectively. Then wc(t) is adjusted according to: 

wc(t + 1) = wc(t) − αt[x(t) − 𝑤𝑐(t)]    (2) 
if x and wc belong to different classes, or 

wc(t + 1) = wc(t) + αt[x(t) − 𝑤𝑐(t)]    (3) 

if x and wc belong to the same class. 

In comparison to previous hardware implementations, 

the designed LVQ SoC shows high flexibility, because the 

updating function of FVs is implemented on an embedded 

RISC CPU by software rather than by a reusable circuit. In 

addition to FV updating, FV initialization, data transfer, and 

winner-class calculation are also carried out via software. 

 

4. Implementation Results and Conclusion 

An LVQ neural network according to the developed SoC 

architecture has been fabricated in 180nm CMOS technol-

ogy (Fig.2) including 10KB shared memory which can store 

2KB input vectors and 8KB FVs, respectively. In this work, 

p = 8 and 16-bit precision are chosen for the PPPI architec-

ture which thus has a throughput of 128 bits per clock cycle 

and a pipeline depth of 7 stages.  

Since no previous LVQ VLSI-research had the goal of 

high flexibility, the achieved flexibility result are difficult to 

compare and are described here by three aspects as follows: 

Differing from the previous ASIC implementation, firstly, 

dimensions of input vectors and FVs are changeable between 

1 to 1024; additionally, the number of FVs is scalable from 

1 to 512; finally, the learning rate αt may be constant or de-

creased monotonically for adapting to different applications. 

Overall flexibility is not limited by the hardware design flex-

ibility described above, but can be extended by the on-chip 

embedded processor using an external memory. 

The area of the fabricated chip is 4.88 mm2 and the aver-

age power consumption is 214 mW. Fig.2 shows the chip 

photograph and the specifications of the fabricated chip. 

Shared memory (SRAM array for input vectors and FVs) and 

RISC CPU with 32 × 32 multiplier consume about 43% 

and 6%, respectively. The efficiency of the fabricated chip is 

evaluated by the recognition speed Sr and the learning speed 

Sl. In the case where dimensionality of input vector and FVs 

is less or equal than 8, the minimal Sr is 0.32 µs and the min-

imal Sl of each iteration is 20.9 µs, when only one FV is 

stored in each hidden neuron. In other words, we achieve a 

recognition rate of 3125000 vectors per second and a learn-

ing rate of 48500 vectors per second. Generally, number and 

dimension of the vectors affect actual recognition and learn-

ing speed.  

Because all previous state-of-the-art work needs an ex-

ternal control unit or a processor to perform learning and 

recognition, comparison with our results is difficult. After 

technology normalization based on the constant field scaling 

concept [5], the throughput of this work is 1.96x higher than 

the previous LVQ neural network design in [2], using Man-

hattan distance (simpler approximation to Euclidean dis-

tance), as listed in Table 1. For the aspects of area consump-

tion and power dissipation, the comparison should consider 

the trade-off between flexibility and performance since our 

chip has an on-chip processor and larger shared memory for 

prioritizing flexibility over size. The design in [2] requires 

communication to a host PC and an external control unit.  

 

Table I  Performance List 

 [2] This work 

Technology 0.8µm 0.18µm 

Bit precision 8-bit 16-bit 

Max dimension flexibility 128 1024 

Parallelism 16 8 

Max number of references 16 512 

Storage capability (bit) 8K 96K 

Distance metrics Manhattan  Euclidean 

Throughput (× 109 bits/s) 1.14 2.23 

Area (mm2) 28.58 4.88 

Power dissipation (mW) 425 214 

 

In conclusion, the proposed SoC for a LVQ neural net-

work with on-chip learning and recognition capability has 

high performance, low power consumption and in addition 

large flexibility for realizing various practical applications. 
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Fig. 2 Micrograph of the designed SoC in 180nm CMOS technology 

and the achieved performance results.    

Technology 180 nm

Chip area 4.88 mm2

Power supply 1.8 V

Power dissipation 214 mW

Frequency 25 MHz

Bit precision 16-bit

Dimension of input vectors 1-1024

Number of neurons 1-512

Minimal recognition speed (µs) 0.32

Minimal learning speed (µs) 20.9
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