Design Guidelines of All Storage Class Memory (SCM) SSD and Hybrid SCM/NAND Flash SSD to Balance Performance, Power, Endurance and Cost

Takahiro Onagi¹, Chao Sun^{1,2} and Ken Takeuchi¹

¹Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-9551 Japan, ²Univ. of Tokyo, Phone: +81-3-3817-7374

E-mail: onagi@takeuchi-lab.org

Abstract

The performance, energy consumption, endurance and cost are compared between the All storage-type storage class memory (S-SCM) solid-state drive (SSD) and Hybrid memory-type SCM (M-SCM)/NAND flash SSD. A wear leveling algorithm has been proposed for the SCM due to its limited endurance. With a 25% M-SCM/NAND capacity ratio, the All S-SCM SSD is faster if the S-SCM latency is <5µs. Moreover, assuming the cost ratio of M-SCM/NAND is 12, All S-SCM SSD is more cost-efficient when S-SCM/NAND cost ratio is < 4.

1. Introduction

Storage class memories (SCMs) are the emerging nonvolatile memories [1, 2]. Since the characteristics of each SCM device are different, memory-type SCM (M-SCM) such as STT-MRAM is named for the DRAM-like SCM with a high performance but low capacity. The NAND flash-like SCM such as ReRAM and PRAM is called storage-type SCM (S-SCM), which has a high capacity while low performance. Fig. 1 describes the switching mechanism of a super-lattice PRAM (SL-PRAM). It can be an ideal candidate for the future high density S-SCM because of the lower SET/RESET current than the GST-PRAM (Fig. 2) [3]. Since the perfect device of high-speed and low-cost does not exist, there is a tradeoff between the speed and cost. For example, the longer word-line and bit-line decrease the chip cost but its larger parasitic resistance and capacitance degrade the performance. For the Hybrid M-SCM/NAND flash solid-state drive (Hybrid SSD), its performance lies between M-SCM and NAND flash. More M-SCM capacity can accelerate the SSD speed but also introduces more cost. Therefore, in this paper, the design guidelines of the All S-SCM SSD and Hybrid SSD are provided considering the performance/cost tradeoff.

2. SSD Architecture and Algorithm

The architectures of the All S-SCM SSD and Hybrid SSD [4] are illustrated in Fig. 3. M-SCM is used as a write cache for the NAND flash to merge the frequently accessed data in the Hybrid SSD. S-SCM is adopted for the All S-SCM SSD due to its high capacity. The SSD controller manages the data storage. The algorithm tables are stored in a DRAM. In the Hybrid SSD, hot or fragmented data are buffered in the M-SCM while cold and sequential data are stored in the NAND flash, as shown in Fig. 4(a) [4]. When the M-SCM is almost full, cold and less fragmented data are evicted to the NAND flash. Since the SCM endurance is limited ($\sim 10^9$), wear leveling is required. In the proposed wear leveling algorithm of Fig. 4(b), an overwrite count WE_{sector} is calculated for each SCM sector (512 Bytes). When the maximum WE_{sector} of a page surpasses a threshold $W_{\rm th}$, the wear leveling procedure is triggered: the old data is read out, merged with the new data and written to a blank SCM page (same page size as the NAND flash), as illustrated in Fig. 5. After that, the old page is recycled as blank and the W_{th} of this physical page is updated by adding an overwrite count N_{ow} . Fig. 6 demonstrates the developed trace-based simulation platform to evaluate the storage system. The system-level performance, energy consumption and endurance of the memory device are outputted as the evaluation results.

3. Results and Discussions

The specifications of the memory devices are listed in Table I. In the Hybrid SSD, the M-SCM capacity is varied from 5% to 25% of the SSD capacity. Workload of the financial server is used for evaluation [5]. Fig. 7 shows the sensitivity analyses of the parameter N_{ow} for the All S-SCM SSD, whose endurance is the reciprocal of the write/erase (W/E) cycle of the mostly worn sector. As shown in Fig. 7(a), a small N_{ow} causes degradation of the endurance, because excessively-frequent data migration is harmful to the SCM endurance. Contrarily, a large N_{ow} leads to an insufficient wear leveling. As a result, write accesses among sectors are not balanced: some sectors are heavily overwritten while others not. From Fig. 7(b), frequent wear leveling procedures degrade the performance of the All SCM SSD. To find the optimum N_{ow} for balancing performance and endurance, Function(T,E) is defined in Fig. 8, in which T and E are the regularized throughput and endurance. The cross point is considered as a balance point between the throughput and endurance. With this optimal N_{ow} , the speed of the All SCM SSD and Hybrid SSD are compared in Fig. 9. All S-SCM SSD with a <5 µs access latency is faster than the Hybrid SSD, when the M-SCM/NAND capacity ratio ($S_{M-SCM/NAND}$) is 25%. When $S_{M-SCM/NAND}$ is <10%, All S-SCM SSD is faster than the Hybrid SSD even S-SCM latency is >10 µs. Assuming the cost of each memory device, the total SSD cost is compared in Fig. 10. The Hybrid SSD with a 25% $S_{M-SCM/NAND}$ is more cost-effective if the S-SCM/NAND cost ratio ($R_{\text{S-SCM/NAND}}$) is >4.

4. Conclusions

The All S-SCM SSD and Hybrid SSD are compared in the performance, power, endurance and cost. As summarized in Table II, compared with the Hybrid SSD, All S-SCM SSD is faster when the M-SCM/NAND capacity ratio of the Hybrid SSD ($S_{M-SCM/NAND}$) is <10%. When $S_{M-SCM/NAND}$ is 25%, S-SCM latency has to be <5 µs to make the All S-SCM SSD faster than the Hybrid SSD. The SSD cost comparisons are summarized in Table III, assuming the cost ratio of M-SCM/NAND is 12, if the S-SCM/NAND cost ratio is <4, All S-SCM SSD has lower cost than its hybrid counterpart with a 25% $S_{M-SCM/NAND}$.

References [1] R.F. Freitas et al., *IBM Journal of Research and Development, vol. 52, no. 4/5*(2008) 439-447. [2] G.W. Burr et al., *IBM Journal of Research and Development, vol. 52, no. 4/5*(2008) 449-464. [3] K. Johguchi at el., IRPS (2013) MY.5.1-MY.5.4 [4] C. Sun *et al., TCAS-I* (2014) 382-392. [5] http://traces.cs.umass.edu/index.php/Storage/Storage

- 107 -