A high-frequency level-up shifter based on $0.18 \mu \mathrm{~m}$ vertical MOSFETs with more than $\mathbf{7 0 \%}$ reduction of overshoot-voltage above VDD

Satoru Tanoi ${ }^{1,2}$, and Tetsuo Endoh ${ }^{1,2}$
${ }^{1}$ Center for Innovative Integrated Electronic Systems, Tohoku University. ${ }^{2}$ ACCEL, JST
468-1 Aramaki aza Aoba 6-6-0, Aoba-ku, Sendai 980-0845, Japan.
Phone: +81-3-5549-6909 E-mail: endoh@cies.tohoku.ac.jp

Abstract

A high frequency and high reliable level-up shifter is proposed. In the design, an initialize circuit, a voltage limiter and a dynamic biasing feed-back are added. In the simulation, our circuit based on $0.18 \mu \mathrm{~m}$ vertical MOSFETs shows more than 70% reduction of the overshoot voltages above $V_{D D}$ from the conventional. It achieves $164-\mathrm{MHz}$ operation frequency with 2-pF loads at $1.8-\mathrm{V}$ maximum voltage applied to the MOSFETS, which is larger than 1.6 times of the conventional frequency.

1. Introduction

Recently, many high-voltage tolerant level-up shifters using the thin-film MOSFETs for low V_{DD} have been developed for high frequency-switching in the power management systems[1]. Though the circuit is comparatively fast with high V_{DD}, the speed rapidly decreases as V_{DD} decreases. Thus, the further speed-advanced circuit has also reported[2]. In the circuit, however, the large overshoot voltages above V_{DD} are applied to the MOSFETs. To be overcome the problems, a new level-up shifter based on the vertical MOSFETs[3] with the dynamic biasing feed-backs is proposed. This paper describes our design and the excellent features.

2. Design for Overshoot Voltage reduction

Figure 1(a) and (b) show the conventional speed advanced level-up shifter[2] and our proposed one relatively. The input voltage swing between V_{DD} and 0 V is converted to the swing between $2 \mathrm{x}_{\mathrm{DD}}$ and V_{DD} at Q, Qb. In our design, a voltage limiter VL(Fig. 1 (c)), a dynamic biasing feed-back $\operatorname{BD}\left(\right.$ Fig. 1(d)), and $\mathrm{N}_{21}, \mathrm{~N}_{2 \mathrm{r}}$ are added for the overshoot voltage reduction. INIT is initialize circuit. The overshoots arise at the output falling. Figure 2 shows the voltage waveforms in each circuit at the output falling. In the conventional, the level of Yb falls rapidly and Qb falls slow. Therefore, the large voltages(>> V_{DD}) are applied to the MOSFETs $\mathrm{P}_{21}, \mathrm{P}_{11}$ at Qb falling. In our circuit(Fig. 2(b)), Vgs of P_{21} is small enough, because of the voltage limiter. INIT, $\mathrm{P}_{\mathrm{a} 5}$ and $\mathrm{N}_{\mathrm{a} 2}$ pre-charge to $\mathrm{QG}(\mathrm{QGb})$ at $\mathrm{Q}(\mathrm{Qb})$ rising. Thanks to the dynamic biasing feed-back, YGb becomes high- Z at Qb falling and the level drops momentary. Thus, Qb fall-time tf is reduced. Since Qb rapidly falls, the Vds overshoot of P_{11} is suppressed. Furthermore, $N_{21}, N_{2 r}$ share the voltage drops.

3. Simulations

For the simulations, $0.18 \mu \mathrm{~m}$ planar MOS parameters (typical) are used. The vertical MOSFET with the large Φ (around $0.18 \mu \mathrm{~m}$) can be approximated by the planar models without the back-bias effect[3]. Using the multi-pillar body-isolated vertical MOSFETs[3-4] shown in Fig. 3(a), the turn-on current I_{b} by the well-parasitic diode can be removed. Thus, JS of MOSFET models is set as zero(Fig. 3(b)). The gate width W_{0} of a MOSFET pillar is set as $560 \mathrm{~nm}(\Phi=0.178 \mu \mathrm{~m})$ and number of pillar for each MOSFET is tuned for I_{ds} tuning as shown in Table. I.

The relations between the maximum voltages $\mathrm{V}_{\mathrm{gsmax}}$, $\mathrm{V}_{\mathrm{gdmax}}, \mathrm{V}_{\mathrm{dsmax}}$ of the MOSFETs and number of pillar $\mathrm{m}_{\mathrm{p} 2}$ (for $\mathrm{P}_{21}, \mathrm{P}_{2 \mathrm{r}}$) are shown in Fig. 4. The data with 3% or more overshoots are plotted. In the conventional, $\mathrm{V}_{\mathrm{gsmax}}$ (or $\mathrm{V}_{\text {gdmax }}$) overshoots above V_{DD} and $\mathrm{V}_{\text {dsmax }}$ one are larager than 0.62 V , and 0.65 V respectively. The overshoots of $\mathrm{V}_{\mathrm{gsmax}}\left(\right.$ or $\left.\mathrm{V}_{\text {gdmax }}\right)$ and $\mathrm{V}_{\mathrm{dsmax}}$ in our circuit are $0.08 \mathrm{~V}(>87 \%$ reduction) and $0.16 \mathrm{~V}(>75 \%$ reduction) respectively. The relations the maximum voltages to MOSFETs between and number of pillar $m_{p 1}$ (for $P_{11}, P_{1 r}$) are shown in Fig. 5. The conventional $\mathrm{V}_{\text {gsmax }}$ (or $\mathrm{V}_{\text {gdmax }}$) overshoots and $\mathrm{V}_{\text {dsmax }}$ one are larger than 0.63 V , and 0.66 V respectively. Those of $\mathrm{V}_{\mathrm{gsmax}}\left(\right.$ or $\left.\mathrm{V}_{\mathrm{gdmax}}\right)$ and $\mathrm{V}_{\text {dsmax }}$ in our circuit are $0.08 \mathrm{~V}(>87 \%$ reduction) and $0.19 \mathrm{~V}(>71 \%$ reduction) respectively. Thus, the overshoot voltages of our circuit are reduced by 70% or more from the conventional.

Figure 6 shows the output rise time tr, the fall time tf and the power consumption $\mathrm{P}_{\text {ower }}$ in the conventional and the proposed. tr of the conventional is about same as that of the proposed. When $\mathrm{m}_{\mathrm{p} 2}$ increases, tf of the conventional decreases. tf of the proposed is about flat to $\mathrm{m}_{\mathrm{p} 2}$. This reason is the main discharge-path difference; the paths of the conventional are $\mathrm{P}_{21}, \mathrm{P}_{2 \mathrm{r}}$ and those of the proposed are $\mathrm{P}_{11}, \mathrm{P}_{1 \mathrm{r}}$. In the simulations, the speed optimized $\mathrm{m}_{\mathrm{p} 1}$ for the conventional and our proposed are 8 and 2 relatively.

The trade-off relations between the maximum voltage $\mathrm{V}_{\text {MOSmax }}$ applied to all MOSFETs voltages and the operation frequency $f_{\text {max }}$ in the conventional and our circuit are shown in Fig. 7(a). The optimized $\mathrm{m}_{\mathrm{p} 1}$ for each circuit is used. $\mathrm{f}_{\text {max }}$ is calculated from tr and tf . Our circuit shows the highest frequency with the same $\mathrm{V}_{\text {MOSmax }}$, and achieves 164 MHz with $2-\mathrm{pF}$ loads and $1.8-\mathrm{V} \mathrm{V}_{\text {MOSmax }}$, which is larger than 1.6 times of the conventional[2]. The relations between the power consumption and $f_{\text {max }}$ are shown in Fig. 7(b). The reverse current to V_{DD} is ignored. In $\mathrm{P}_{\text {ower }}-\mathrm{f}_{\text {max }}$ trade-off, our circuit is very advantageous to the conven-
tional[1] and is about same as the conventional[2].

4. Conclusions

The level-up shifters with applied voltage limiting is proposed. The circuit is designed using vertical MOSFET without the well-diode turn-on. In the simulations, the proposed circuit reduces the overshoot voltages above V_{DD} by 70% or more from the conventional, and achieves 164 MHz at $1.8-\mathrm{V}$ maximum voltages applied to MOSFETs, which is larger than 1.6 times of the conventional frequency.

Acknowledgements

This work has been supported in part by JST, ACCEL. This work was designed in with Cadence and Synopsys tools, and in the chip fabrication program of VDEC, the University of Tokyo in collaboration with Rohm.

References

[1]S. Rajapandian, et al., IEEE J. Solid-State Circuits, 41 (2006) 1400.
[2]C. Huang and H. Lin, Jpn. J. Appl. Phys. 51 (2012) 02BE08.
[3]K. Sakui and T. Endoh, IEEE ICMTS, Proc. (2010) 220.
[4]T. Endoh, et al., IEICE Trans. Electron., E93-C, (2010) 557.

Fig. 1 Level-up shifter of conventional and proposed.

Fig. 2 Voltage waveforms at output falling.

(a) Structure[3][4]

(b) I_{b} waveforms

Fig. 3 Structure and Ib of Vertical MOSFET.

(Number of pillars for of $\mathrm{P}_{2}, \mathrm{P}_{2 \mathrm{r}}$)
(Number of pillars for of $\mathrm{P}_{21}, \mathrm{P}_{2 \mathrm{r}}$)
(a) Maximum Vgs, Vgd
(b) Maximum Vds

Fig. 4 Relations between $\mathrm{m}_{\mathrm{p} 2}$ and Maximum voltages to MOSFETs.

Fig. 5 Relations between $m_{p 1}$ and Maximum voltages to MOSFETs.

Fig. 6 Relations between $m_{p 2}, m_{p 1}$ and $t r, t f$.

Fig. 7 Trade-off relations $\left(\mathrm{V}_{\text {mosmax }}\right.$ vs $\mathrm{f}_{\text {max }}$ and $\mathrm{P}_{\text {ower }}$ vs $\mathrm{f}_{\text {max }}$).
Table. I Number of Pillars for each MOSFET's.

	Variables		Constants					
symbole in Fig. 1	$\mathrm{P}_{11}, \mathrm{P}_{1 \mathrm{r}}$	$\mathrm{P}_{21}, \mathrm{P}_{2 \mathrm{r}}$	$\mathrm{P}_{01}, \mathrm{P}_{0 \mathrm{r}}$	$\mathrm{N}_{11}, \mathrm{~N}_{1 \mathrm{r}}$	$\mathrm{N}_{21}, \mathrm{~N}_{2 \mathrm{r}}$	P_{aj}		
$(\mathrm{j}=1,2 .)$.								

(\mathrm{j}=1,2 . .)\end{array}\right) $$
\begin{array}{c}\text { NMOS } \\
\text { in INV }\end{array}
$$\right]\)

