Study of HfO₂/AlGaN/GaN MOS-HEMT for High Power Application Wei Cheng Lan¹, Ping Chieh Chin¹, Yueh Chin Lin², Jer Shen Maa³ and Edward Yi Chang^{2,4}

¹Institute of Photonic System, National Chiao-Tung University (NCTU).

1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, R.O.C.

Phone: +886-9-3889-7876 E-mail: function@cycu.org.tw

²Institute of Materials Science and Engineering, National Chiao-Tung University (NCTU).

³Institute of Lighting and Energy Photonics, National Chiao-Tung University (NCTU).

⁴Institute of Electronics Engineering, National Chiao-Tung University (NCTU).

Abstract

HfO₂/AlGaN/GaN MOS-HEMT with different post deposition annealing (PDA) temperatures is characterized for high power application. The results indicated that AlGaN/GaN MOS-HEMT with HfO₂ as gate insulator have better electrical characteristics, including reduction of gate leakage current and improvement of the drain current degradation under high voltage stress. Furthermore, reliability of HfO₂ MOS-HEMT after PDA 500°C is more stable compared to other techniques HEMT devices.

1. Introduction

In recent years, GaN-based high-electron-mobility transistors (HEMTs) devices have become one of the most promising power device, due to their excellent electric properties, such as wide bandgap (3.4 eV), high saturation velocity $(2.5 \times 10^7 \text{ cm/s})$, large breakdown electrical field (3.3 MV/cm) and great output power density [1].

However, there are several unsolved issues that limit the industry applications of the conventional AlGaN/GaN HEMTs. Gate leakage current is the major problem, which increases power dissipation and decreases the device life-time for long-term operation [2-3]. Besides, poor long-term reliability of the schottky gate causes serious current degradation.

Recently, effective suppression of gate leakage current and current degradation of AlGaN/GaN HEMT have been demonstrated by inserting a high energy bandgap insulator between gate metal electrode and semiconductor [4]. In this study, we present the electrical performance of Al-GaN/GaN MOS-HEMT with HfO₂ as the gate insulator. It shows that the gate leakage current is substantially reduced, and the drain-source current degradation is suppressed as compared the conventional schottky barrier AlGaN/GaN HEMT.

2. Device fabrication and measurement

The samples used in this study are AlGaN/GaN HEMT wafers grown by MOCVD on the silicon substrate. It includes a 1um GaN buffer, a 30nm undoped AlGaN barrier and 1.5nm undoped GaN cap. Both MOS-HEMT and conventional AlGaN/GaN HEMT devices were fabricated for performance comparison. Fabrication process includes mesa isolation, Ohmic contact, and gate information. The mesa isolation was performed using inductively coupled plas-

ma (ICP) etch with Cl₂ gas to define the active region, the etching depth was 200nm. The multilayer metal of Ti/Al/Ni/Au was deposited using E-Gun evaporator and annealed by rapid thermal annealing (RTA) system at 800° C for 60 sec in N₂ ambient to form Ohmic contact, and the spacing of source-drain was 20um. Finally, Ni/Au gate metal was deposited by E-Gun evaporator, and the gate length used was 2um. Conventional HEMT device (sample S1) was fabricated for comparison. For the MOS-HEMTs, the process steps are the same as conventional HEMT devices except for an insulator thin film (gate dielectric) was deposited between GaN cap and Ni/Au. 7nm HfO2 was deposited on by molecular beam deposition (MBD) as the gate dielectric. Three samples with various post deposition annealing (PDA) temperatures were prepared: sample 2 (S2), sample 3 (S3) and sample 4 (S4) were individually annealed at 400°C, 450°C and 500°C.

Agilent E5270B power device analyzer was used for DC characterization of the samples and reliability test after long-term high voltage stress. To investigate the long-term current degradation, the devices were stressed for 1 hour at a drain-source voltage (V_{DS}) of 200V with V_{GS} =-5V and the I-V characteristics were measured from off-state to on-state before and after stress.

3. Results and discussions

3.1 DC measurements

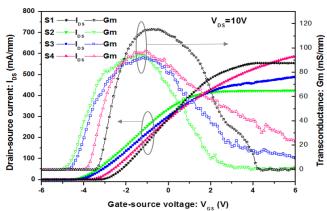


Fig. 1 Comparison of DC characteristics for conventional HEMT and MOS-HEMT: G_m and I_{DS} versus V_{GS} curves.

Figure 1 shows the comparison of the DC characteristics of the four different types of AlGaN/GaN HEMTs. As compared with the conventional HEMT, comparable device DC characteristics were obtained for the MOS-HEMTs. However, higher maximum drain-source current ($I_{DS,max}$) of 588mA/mm at gate-source voltage of 6V was achieved for the sample 4 as shown in Fig. 1(S1: 555mA/mm, S2: 424mA/mm, S3: 491mA/mm).

3.2 Reliability test

For the high voltage stress test, the AlGaN/GaN HEMTs were stressed at a drain-source voltage (V_{DS}) of 200V with V_{GS} =-5V for 1 hour. The DC characteristics before and after stress for the conventional HEMT and MOS-HEMT are shown in Fig. 2, and the V_{GS} bias was setting from -5 to 3V. It was found that the drain-source current (I_{DS}) decreased for all devices after stressed for 1 hour. However, the current degradation of the conventional HEMT is more serious than the three types of MOS-HEMTs, this is due to the HfO₂ layer effectively suppressed the defect generation and charge injection when the devices were under high voltage stress [1].

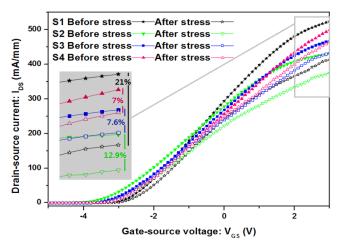


Fig. 2 DC characteristics of the four samples before and after stress.

In addition, Fig. 2 shows that the current degradation of S4 is lower than S2 and S3. This is owing to the interface traps between HfO₂ and AlGaN were favorably reduced by post deposition annealing at 500°C. The effective density of the interface traps D_{it} with different time constants can be estimated using the following expression:

$$D_{it} = rac{C_{stack} \cdot \Delta V_{fdis}}{q}$$

where C_{stack} is the capacitance of the HfO₂ (7nm) stack and ΔV_{fdis} is the onset voltage dispersion between two frequencies [5]. From figure 3, it is obvious that the D_{it} of S4 is the smallest among the three types of MOS-HEMT studied.

The smaller current degradation indicates that S4 is more stable than the other samples. Furthermore, the threshold voltage of S2, S3 and S4 are -4.7V, -4.5V and -3.7V, respectively.

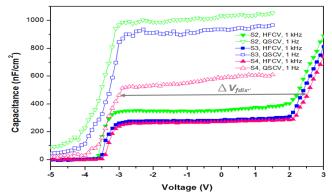


Fig. 3 High-frequency (1 kHz) and quasi-static (1 Hz) C-V curves of the MOS-HEMT with HfO_2 stack as the insulator.

4. Conclusions

An effective insulator technique using 7nm thick HfO_2 film deposited by molecular beam deposition is applied to the fabrication of AlGaN/GaN power MOS-HEMTs. In this study, the MOS-HEMT gate leakage current can be reduced almost 2~4 orders compared to the conventional HEMT in forward bias region. Moreover, MOS-HEMT with HfO_2 as gate insulator can suppress the current degradation under high voltage stress after PDA at 500°C. In summary, MOS-HEMT with HfO_2 gate insulator have demonstrated good potential for high power applications as evidenced by the suppression of gate leakage current and device current degradation.

Acknowledgements

This work was long-term sponsored by the NCTU-UCB I-RiCE program, Ministry of Science and Technology, Taiwan, under Grant No. MOST 103-2911-I-009-302

References

- Y. C. Lin, C. H. Chang, F. M. Li, L. H. Hsu, and E. Y. Chang, "Evaluation of TiN/Cu Gate Metal Scheme for AlGaN/GaN HEMT Application," *Applied Physics Express*, vol. 6, pp. 091003-1–091003-3, 2013.
- [2] Khan M A, Hu X, Tarakji A, et al. AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates. *Appl Phys Lett*, 2000, 77: 1339-1341.
- [3] Mizuno S, Ohno Y, Kishimoto S. Large gate leakage current in AlGaN/GaN high electron mobility transistors. *Jpn J Appl Phys Part 1*, 2002, 41: 5125-5126.
- [4] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, "GaN metal-oxide-semiconductor high electron mobility transistor with atomic layer deposited Al2O3as gate dielectric," *Applied Physics Letters*, vol. 86, no. 6, pp.2084-2086, 2005.
- [5] Kevin J Chen and Sen Huang, "AlN passivation by plasma-enhanced atomic layer deposition for GaN-based power switches and power amplifiers." *Semicond. Sci. Technol.* 28 (2013) 074015 (8pp)