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Abstract 

We prepared Cu-poor CIS phases such as CuInSe2, 

CuIn3Se5, and CuIn5Se8 in the composition of 

(1-x)Cu2Se-(x)In2Se3 with 0.5 ≤ x ≤ 1.0. The crystal 

structure of the sample was changed from chalcopy-

rite-type CuInSe2 to hexagonal CuIn5Se8 through a 

stannite-type CuIn3Se5 with increasing x.  The band 

gap energies of these samples increased stepwise with 

decreasing Cu/In ratio. The energy levels of the VBMs 

were estimated from the ionization energies by photoe-

mission yield spectroscopy (PSY) measurements. The 

energy levels of the VBMs of the Cu-poor CIS samples 

decrease dramatically by decreasing Cu/In ratio. 

 

1. Introduction 

Recently, EMPA [1] and ZSW [2] groups recently re-

ported the high-efficiency CIGS solar cells more than 20%. 

Their groups fabricated the CIGS solar cells by 

post-deposition of sodium fluoride (NaF) and potassium 

fluoride (KF) on CIGS films and annealing in Se atmos-

phere. After the post-deposition treatment and annealing, 

Cu-deficient layer was formed at the surface of the CIGS 

layer. In the Cu2Se–In2Se3 pseudo-binary system [3], 

some Cu-poor compounds such as tetragonal chalcopy-

rite-type CuInSe2, tetragonal stannite-type CuIn3Se5, and 

tetragonal and hexagonal CuIn5Se8 phases have been 

reported. A number of studies on Cu-poor CIS compounds 

have been carried out from 1993 [4]. Our group also has 

studied CuIn3Se5 and CuIn5Se8 for 20 years [5-7]. Recently, 

we reported detail crystal structure of Cu-poor CIS com-

pounds by x-ray absorption fine structure (XAFS) [8]. 

In order to clarify the detail optical property and 

band diagram of Cu-poor CIS compounds, we synthe-

sized (1-x)Cu2Se-(x)In2Se3 (0.5 ≤ x ≤ 1.0). We investigated 

crystallographic and optical properties of the Cu-poor 

CIS samples. Then we determined their band gap ener-

gies and ionization energies. 

 

2. Experimental Procedures 

Starting materials of elemental powders such as Cu, In, 

and Se were weighed to give a molar ratio of 

(1-x)Cu2Se-(x)In2Se3 (x=0.5, 0.55, 0.60, 0.70, 0.75, 0.80, 

0.85, 0.90, 0.95, 1.0). The chemical composition of the 

samples with x=0.5, 0.75, 0.83 are corresponding to 

CuInSe2 (Cu/In=1), CuIn3Se5 (Cu/In=0.33), and CuIn5Se8 

(Cu/In=0.2), respectively. Elemental powders were put into 

a grinding jar made of zirconia along with zirconia balls. 

The milling was conducted in a planetary ball mill (Fritsch 

premium line P-7) under a rotational speed of 800 rpm with 

a milling period of 20 min in an N2 gas atmosphere. The 

mixed powders were heated at 550
o
C for 30 min in an N2 

gas atmosphere. 

The phases in the obtained powders were identified by 

X-ray powder diffraction using Cu-Kα radiation. The crys-

tal structures of the Cu-poor CIS samples were analyzed by 

Rietvelt refinement using X-ray diffraction data on the ba-

sis of tetragonal chalcopyrite-type structure [space group: 

I4-2d (No. 122)] and stannite-type structure (Paszkowicz’s 

model [5]) [space group: I4-2m (No. 121)], and hexagonal 

structure [6]. Optical properties of the Cu-poor CIS samples 

were characterized by UV-vis-NIR spectroscopy (JASCO 

V-670DS). The band-gap energies of the Cu-poor CIS sam-

ples were determined by diffuse reflectance spectra. The 

ionization energy of the Cu-poor CIS samples was directly 

measured by photoemission yield spectroscopy (PYS) 

(Bunkoukeiki: BIP-KV201).  

 

3. Results and discussion 

3.1 Preparation of Cu-poor CIS 

 Figure 1 shows the X-ray diffraction (XRD) patterns of 

the (1-x)Cu2Se-(x)In2Se3 with 0.5 ≤ x ≤ 1.0 synthesized by 

mixing the elemental powders and additional heating at 

550
o
C. The diffraction peaks of the samples with x=0.5 and 

x=0.55 could be indexed on the basis of a tetragonal chal-

copyrite-type structure. For the Cu-poor CIS samples with 

0.60 ≤ x ≤ 0.75, the diffraction peaks could be indexed on 

the basis of a tetragonal stannite-type structure [5]. 

For the samples with 0.80 ≤ x ≤ 0.95, the diffraction peaks 

are identified to be the mixed CuIn5Se8 phases of the te-

tragonal and hexagonal structures. 
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Figure 1 X-ray diffraction patterns of Cu-poor CIS samples in the 

(1-x)Cu2Se-(x)In2Se3 pseudo-binary system. 
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3.2 Band gap energy and band diagram of Cu-poor CIS 

Figure 2(a) shows the diffuse reflectance spectra of the 

(1-x)Cu2Se-(x)In2Se3 with 0.5 ≤ x ≤ 1.0 powders measured 

by UV-vis-NIR spectroscopy. The reflectance edges of the 

Cu-poor CIS samples shifted to shorter wavelengths by 

increasing x. Figure 2(b) shows (F(R)hν)
2
 vs. hν plot of the 

diffuse reflectance spectra of the (1-x)Cu2Se-(x)In2Se3 with 

0.5 ≤ x ≤ 1.0 powders. The band-gap energies were calcu-

lated by Tauc plot of the diffuse reference data.  
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Figure 2 Diffuse reflectance spectra (a) and (F(R)hν)2 vs. hν plot 

(b) of Cu-poor CIS samples in the (1-x)Cu2Se- (x)In2Se3 

pseudo-binary system measured by UV-vis-NIR spec-

troscopy. 

 

Figure 3 shows the band-gap energies of 

(1-x)Cu2Se-(x)In2Se3 with 0.5 ≤ x ≤ 1.0 estimated from the 

(F(R)hν)
2
 vs. hν plot of the reflectance spectra. The deter-

mined band-gap energies of (1-x)Cu2Se-(x)In2Se3 with x= 

0.5, 0.55, 0.60 of tetragonal chalcopyrite phase are 0.99, 

098, and 0.99 eV, respectively. The band-gap energy of the 

samples with x= 0.65, 0.70, 0.75 of tetragonal stannite 

phase are 1.11, 1.13, and 1.17 eV, respectively. The 

band-gap energies of the Cu-poor CIS samples increase 

stepwise with decreasing Cu/In ratio.  

Figure 4 shows photoemission yield spectroscopy spec-

trum of CuInSe2 (x=0.5). The determined ionization energy 

of the CuInSe2 was 4.90 eV, which is higher than the Jae-

germann’s value (-5.4 eV) [7]. Recently, we confirmed that 

the ionization energy determined by PYS was in good 

agreement with the value determined by X-ray photoelec-

tron spectroscopy with UV photoelectron yield spectrosco-

py for BaCuSeF [12]. The valence band maximam (VBM) 

and conduction band minimum (CBM) of CuInSe2 are es-

timated to be -4.90 eV and -3.91 eV, respectively. The en-

ergy level of the VBM was estimated from the ionization 

energies by PSY measurements. The energy level of the 

CBM was calculated from the estimated VBM and esti-

mated band gap energy shown in Fig. 3.The energy levels 

of the VBMs of the Cu-poor CIS samples change stepwise 

and decrease dramatically by decreasing Cu/In ratio. The 

energy level of the CBM also decreases with decreasing 

Cu/In ratio. 
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Figure 3 Band-gap energies of Cu-poor CIS samples in the 

(1-x)Cu2Se-(x)In2Se3 pseudo-binary system estimated 

from the (F(R)hν)2 vs. hν plot. 
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Figure 4 Photoemission yield spectroscopy spectrum of CuInSe2 

(x=0.5). 
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