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Abstract

We prepared Cu-poor CIS phases such as CulnSe,,
Culn;Ses, and CulnsSe; in the composition of
(1-x)Cu,Se-(x)In,Se; with 0.5 < x < 1.0. The crystal

The milling was conducted in a planetary ball mill (Fritsch
premium line P-7) under a rotational speed of 800 rpm with
a milling period of 20 min in an N, gas atmosphere. The
mixed powders were heated at 550°C for 30 min in an N,

structure of the sample was changed from chalcopy-
rite-type CulnSe, to hexagonal CulnsSeg through a
stannite-type Culn;Ses with increasing x. The band
gap energies of these samples increased stepwise with
decreasing Cu/In ratio. The energy levels of the VBMs
were estimated from the ionization energies by photoe-
mission yield spectroscopy (PSY) measurements. The
energy levels of the VBMs of the Cu-poor CIS samples

gas atmosphere.

The phases in the obtained powders were identified by
X-ray powder diffraction using Cu-Ka radiation. The crys-
tal structures of the Cu-poor CIS samples were analyzed by
Rietvelt refinement using X-ray diffraction data on the ba-
sis of tetragonal chalcopyrite-type structure [space group:
14-2d (No. 122)] and stannite-type structure (Paszkowicz’s
model [5]) [space group: 14-2m (No. 121)], and hexagonal

decrease dramatically by decreasing Cu/In ratio.

1. Introduction

Recently, EMPA [1] and ZSW [2] groups recently re-
ported the high-efficiency CIGS solar cells more than 20%.

Their groups fabricated the CIGS solar cells

structure [6]. Optical properties of the Cu-poor CIS samples
were characterized by UV-vis-NIR spectroscopy (JASCO
V-670DS). The band-gap energies of the Cu-poor CIS sam-
ples were determined by diffuse reflectance spectra. The
ionization energy of the Cu-poor CIS samples was directly
measured by photoemission yield spectroscopy (PYS)

post-deposition of sodium fluoride (NaF) and potassium
fluoride (KF) on CIGS films and annealing in Se atmos-
phere. After the post-deposition treatment and annealing,
Cu-deficient layer was formed at the surface of the CIGS
layer. In the Cu2Se—In2Ses pseudo-binary system [3],
some Cu-poor compounds such as tetragonal chalcopy-
rite-type CulnSe;, tetragonal stannite-type CulnsSes, and
tetragonal and hexagonal CulnsSeg phases have been
reported. A number of studies on Cu-poor CIS compounds
have been carried out from 1993 [4]. Our group also has
studied Culn;Ses and CulnsSeg for 20 years [5-7]. Recently,
we reported detail crystal structure of Cu-poor CIS com-
pounds by x-ray absorption fine structure (XAFS) [8].

In order to clarify the detail optical property and
band diagram of Cu-poor CIS compounds, we synthe-
sized (1-x)Cu,Se-(x)In,Se; (0.5 < x < 1.0). We investigated
crystallographic and optical properties of the Cu-poor
CIS samples. Then we determined their band gap ener-
gies and ionization energies.

2. Experimental Procedures

Starting materials of elemental powders such as Cu, In,
and Se were weighed to give a molar ratio of
(1-x)Cu,Se-(x)In,Se; (x=0.5, 0.55, 0.60, 0.70, 0.75, 0.80,
0.85, 0.90, 0.95, 1.0). The chemical composition of the
samples with x=0.5, 0.75, 0.83 are corresponding to
CulnSe, (Cu/In=1), Culn;Ses (Cu/In=0.33), and CulnsSey
(Cu/In=0.2), respectively. Elemental powders were put into
a grinding jar made of zirconia along with zirconia balls.

(Bunkoukeiki: BIP-KV201).

3. Results and discussion
3.1 Preparation of Cu-poor CIS
Figure 1 shows the X-ray diffraction (XRD) patterns of
the (1-x)Cu,Se-(x)In,Se; with 0.5 < x < 1.0 synthesized by
mixing the elemental powders and additional heating at
550°C. The diffraction peaks of the samples with x=0.5 and
x=0.55 could be indexed on the basis of a tetragonal chal-
copyrite-type structure. For the Cu-poor CIS samples with
0.60 < x < 0.75, the diffraction peaks could be indexed on
the basis of a tetragonal stannite-type structure [5].
For the samples with 0.80 < x < 0.95, the diffraction peaks
are identified to be the mixed CulnsSeg phases of the te-
tragonal and hexagonal structures.
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Figure 1 X-ray diffraction patterns of Cu-poor CIS samples in the
(1-x)Cu,Se-(x)In,Se; pseudo-binary system.

- 668 -



3.2 Band gap energy and band diagram of Cu-poor CIS

Figure 2(a) shows the diffuse reflectance spectra of the
(1-x)CuySe-(x)In,Se; with 0.5 < x < 1.0 powders measured
by UV-vis-NIR spectroscopy. The reflectance edges of the
Cu-poor CIS samples shifted to shorter wavelengths by
increasing x. Figure 2(b) shows (£ (R)hv)* vs. hy plot of the
diffuse reflectance spectra of the (1-x)Cu,Se-(x)In,Se; with
0.5 < x < 1.0 powders. The band-gap energies were calcu-
lated by Tauc plot of the diffuse reference data.
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Figure 2 Diffuse reflectance spectra (a) and (F(R)Av)* vs. hv plot
(b) of Cu-poor CIS samples in the (1-x)Cu,Se- (x)In,Se;
pseudo-binary system measured by UV-vis-NIR spec-
troscopy.

Figure 3 shows the band-gap energies of
(1-x)Cu,Se-(x)In,Se; with 0.5 < x < 1.0 estimated from the
(F(R)hv)* vs. hv plot of the reflectance spectra. The deter-
mined band-gap energies of (1-x)Cu,Se-(x)In,Se; with x=
0.5, 0.55, 0.60 of tetragonal chalcopyrite phase are 0.99,
098, and 0.99 eV, respectively. The band-gap energy of the
samples with x= 0.65, 0.70, 0.75 of tetragonal stannite
phase are 1.11, 1.13, and 1.17 eV, respectively. The
band-gap energies of the Cu-poor CIS samples increase
stepwise with decreasing Cu/In ratio.

Figure 4 shows photoemission yield spectroscopy spec-
trum of CulnSe, (x=0.5). The determined ionization energy
of the CulnSe, was 4.90 eV, which is higher than the Jae-
germann’s value (-5.4 eV) [7]. Recently, we confirmed that
the ionization energy determined by PYS was in good
agreement with the value determined by X-ray photoelec-
tron spectroscopy with UV photoelectron yield spectrosco-

py for BaCuSeF [12]. The valence band maximam (VBM)
and conduction band minimum (CBM) of CulnSe, are es-
timated to be -4.90 eV and -3.91 eV, respectively. The en-
ergy level of the VBM was estimated from the ionization
energies by PSY measurements. The energy level of the
CBM was calculated from the estimated VBM and esti-
mated band gap energy shown in Fig. 3.The energy levels
of the VBMs of the Cu-poor CIS samples change stepwise
and decrease dramatically by decreasing Cu/In ratio. The
energy level of the CBM also decreases with decreasing
Cu/In ratio.
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Figure 3 Band-gap energies of Cu-poor CIS samples in the
(1-x)Cu,Se-(x)In,Se; pseudo-binary system estimated
from the (F(R)hv)* vs. hv plot.
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Figure 4 Photoemission yield spectroscopy spectrum of CulnSe,
(x=0.5).
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