# Tolerance to UV-O<sub>3</sub> Exposure of CVD and Mechanically Exfoliated MoS<sub>2</sub> & Fabrication of Top-Gated CVD MoS<sub>2</sub> FETs

<sup>1\*</sup>S. Kurabayashi and <sup>1,2</sup>K. Nagashio
<sup>1</sup>Department of Materials Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
<sup>2</sup>PRESTO-JST, Japan
\*E-mail: kurabayashi@ncd.t.u-tokyo.ac.jp

In this work, well-separated triangle  $MoS_2$  crystals were synthesized at large area on the SiO<sub>2</sub>/Si substrate by CVD. The ozone exposure experiment indicated that the tolerance to UV-O<sub>3</sub> for exfoliated  $MoS_2$  is higher than that for CVD  $MoS_2$ . The narrower PL peak for CVD  $MoS_2$  seems not to be due to the low defect density, but due to the strain induced during CVD. This is supported by the Raman data. Finally, we demonstrated the Al<sub>2</sub>O<sub>3</sub> top gate FET with negligible leakage currents.

## **1. Introduction**

The perspective to overcome the short channel effect based on the scaling length [1] attracts great attention to 2D layered MoS<sub>2</sub> semiconductors, due to their rigidly-controllable few atomic thickness. It's important to synthesize high quality MoS<sub>2</sub>, because the quality of bulk MoS<sub>2</sub> is not high in contrast to Kish graphite. The chemical vapor deposition (CVD) using S and MoO<sub>3</sub> precursors has been the primary approach for MoS<sub>2</sub> synthesis [2]. The photoluminescence (PL) peak for CVD MoS<sub>2</sub> is narrower than that for mechanicallyexfoliated (ME) one [3], which generally suggests that the films are typically of high quality comparable to ME. The mobility for CVD MoS<sub>2</sub>, however, is always lower than that for ME  $MoS_2$  [4]. This discrepancy results from the unavailability of quantitative method to evaluate the amount of defects in MoS<sub>2</sub>, in contrast with Raman D band intensity in graphene. Although the tolerance of MoS<sub>2</sub> films to UV-O<sub>3</sub> provides the information on defects, no comparison of ME and CVD MoS<sub>2</sub> has been reported.

In this study, we first investigate the appropriate substrate position during the CVD growth. Then, the tolerance to UV-O<sub>3</sub> for CVD and ME  $MoS_2$  are investigated to evaluate the crystallinity. Finally, to characterize the electrical transport properties, the top gate FET was fabricated using CVD-MoS<sub>2</sub>.

## 2. Chemical vapor deposition

**Fig. 1a** shows a schematic illustration of growth tube furnace where  $MoO_3$  and S boats are located at the center and the upper stream region of  $N_2$  gas flow, respectively.  $MoO_3$  was heated to  $600^{\circ}$ C or  $700^{\circ}$ C. Three set of substrates (A1~3 or B1~3) can be placed for one growth run. In case of B1~3, the substrate holder was used to adjust the height (not shown in the figure).

The growth of MoS<sub>2</sub> was observed mainly at A2 and B2, not at other positions. Figures 1b & c show the optical images at A2 and B2, respectively. At both positions, typical triangle shape of MoS<sub>2</sub> is observed. From the viewpoint of the device fabrication, B2 is more suitable than A2, because MoS<sub>2</sub> triangles are completely separated and the growth area is roughly 10 times larger. The maximum size obtained recently is  $\sim 100 \,\mu\text{m}$  in length (inset), which is largest reported so far in the literatures. At A2, Mo content on the substrate is large enough because of the short distance between MoO<sub>3</sub> and substrate, resulting in the continuous film of  $MoS_2$ . On the other hand, at B2, reduced Mo content on the substrate leads to separated triangles, but the higher growth temperature is required (700°C for B2, 600°C for A2). Based on these discussion, the control of Mo content on the substrate could be the main growth factor.

**Figure 2** shows (a) PL spectra and (b) Raman data for CVD and ME MoS<sub>2</sub>. The full width at half maximum of PL spectrum for CVD MoS<sub>2</sub> (~0.06eV) was lower than

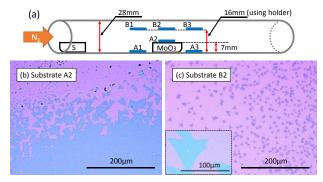



Fig. 1 (a) Schematic illustration of growth tube furnace, and optical images for  $MoS_2$  triangles observed at (b) A2 at 600°C and (c) B2 at 700°C, respectively.

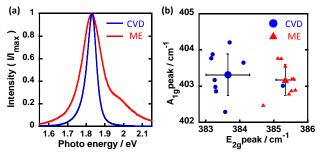
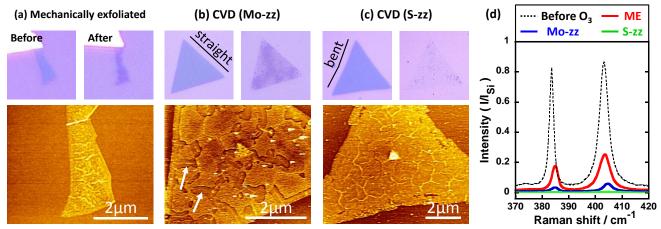



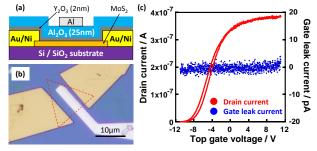

Fig. 2 (a) PL spectra for CVD and ME MoS<sub>2</sub>. The vertical axis is normalized by maximum intensity. (b) Raman map for CVD and ME  $MoS_2$ .



**Fig. 3** (a)~(c) Optical images before and after UV-O<sub>3</sub> exposure. Mo-zz edge is straight, while S-zz edge is bent. AFM images after UV-O<sub>3</sub> exposure and change of appearance in optical microscope (d) Raman peaks for three samples after UV-O<sub>3</sub> exposure. The dotted line indicates the Raman peaks for non UV-O<sub>3</sub> treated MoS<sub>2</sub> as a standard. All the data was normalized by the intensity of Si.

that for ME one (~0.1eV), which is consistent with the previous report [3].  $E_{2g}$  peak for CVD MoS<sub>2</sub> is red-shifted from that for ME MoS<sub>2</sub>, suggesting that in-plane vibration is weakened. It is expected that the amount of strain due to the interaction with the substrate is different.

#### 3. Tolerance to UV-O<sub>3</sub> for CVD and ME MoS<sub>2</sub>


In order to evaluate the crystallinity of CVD and ME  $MoS_2$ , the tolerance of  $MoS_2$  to the UV-O<sub>3</sub> was studied. According to the literature [5], CVD  $MoS_2$  can be categorized into 2 groups; Mo-zigzag edge (Mo-zz) and S-zigzag edge (S-zz). The Mo-zz edge is shaper and linear than the S-zz one. Mo-zz is generally found at the downstream of N<sub>2</sub> gas flow (Mo-rich area) because Mo-zz is likely to grow at Mo-rich area. This difference can be clearly seen in **Fig. 3**. Each  $MoS_2$  was exposed to UV-O<sub>3</sub> (~25ppm) at 150°C for 5 min.

After UV-O<sub>3</sub> exposure, the optical contrast for ME MoS<sub>2</sub> became dark purple, while the morphology is not changed so much in AFM image. Raman peak intensity is reduced. Mo-zz MoS<sub>2</sub> partially become spotted dark purple; in fact, the some part of top S layer seems to be etched away in AFM image. At the etched region, the line can be seen, as shown by arrows in AFM image. Raman peak intensity was largely decreased. On the other hand, the whole surface of S-zz MoS<sub>2</sub> became light-colored. It is difficult to see it by optical image. However, in AFM image, S-zz MoS<sub>2</sub> still exists but top S layer were totally etched away, and lines are observed throughout the sample. In this case, Raman peak disappeared. This means that the etching rate of top S-layer is much faster for S-zz MoS<sub>2</sub>.

Based on these results, the order of tolerance to UV-O<sub>3</sub> is ME > CVD Mo-zz > CVD S-zz. In other words, the defect density for CVD MoS<sub>2</sub> is larger than that for ME MoS<sub>2</sub>. The narrower FWHM in PL for CVD MoS<sub>2</sub> in **Fig. 2a** is not due to the low defect density, but due to the strain induced in the films during the CVD growth, which can be supported by the Raman data in **Fig. 2b**.

#### 4. ALD-Al<sub>2</sub>O<sub>3</sub> top-gate FET

Mo-zz MoS<sub>2</sub> was selected for the device. The Y metal with 1.5 nm was deposited on MoS<sub>2</sub> channel and then oxidized at 200°C. Subsequently, ~25 nm Al<sub>2</sub>O<sub>3</sub> was deposited by atomic layer deposition (ALD) at 200°C using trimethylaluminum and water. Finally, Al was deposited as a top gate electrode. **Figure 4** shows (a) schematic illustration and (b) optical image for this device. Transport characteristics are shown in **Fig. 4c**. Because of intrinsic band gap (~1.85eV), clear transfer curve is obtained. The gate leakage current is 5 orders lower than drain current, suggesting that the top gate insulator is quite good quality.



**Fig. 4** Schematic illustration (a) and optical image (b) optical image of the device. (c) Drain and leakage currents as a function of top gate voltage.

#### 5. Conclusions

The order of tolerance to  $O_3$  was ME > CVD Mo-zz > CVD S-zz, suggesting that the defect density for CVD MoS<sub>2</sub> is larger than that for ME MoS<sub>2</sub>. The narrower FWHM in PL for CVD MoS<sub>2</sub> is not due to the low defect density, but due to the strain induced in the films during the CVD growth. The further improvement of crystalline quality is required for device applications.

Acknowledgements: This work was partly supported by a Grantin-Aid for Scientific Research from the MEXT in JAPAN.

**Reference**: [1] I. Ferain, *et al.*, *Nature* 2011, **479**, 310. [2] A. M. van der Zande, *et al.*, *Nature Mater.* 2013, **12**, 554. [3] M. Amani, *et al.*, *Appl. Phys. Lett.* 2014, **104**, 203506. [4] H. Liu, *et al.*, *Nano lett.* 2013, **13**, 2640. [5] L. Byskov, *et al.*, *Catal. Lett.* 2000, **64**, 95.