Heavily Ga-doped Germanium-Tin Alloys by Molecular Beam Epitaxy

Wei Wang,¹ Vijay Richard D' Costa,¹ Sin Leng Lim,² Qian Zhou,¹ Eng Soon Tok,² and Yee-Chia Yeo.^{1, *}

¹ Department of Electrical and Computer Engineering, National University of Singapore (NUS), Singapore 117582. ² Department of Physics, National University of Singapore, Singapore 117551.

*Phone: +65 6516-2298, Fax: +65 6779-1103, E-mail: yeo@ieee.org

ABSTRACT

 BF_2^+ implantation with solid-phase epitaxial regrowth (SPER) is not suitable for realizing heavily *p*-type $Ge_{1-x}Sn_x$ at high Sn content, due to the degraded crystalline quality. Heavily *p*-type $Ge_{1-x}Sn_x$ alloys were realized by *in-situ* Ga doping, with an active doping concentration of up to 4.3×10^{20} cm⁻³. The dependences of crystallinity and mobility on the active Ga concentrations were also investigated.

1. INTRODUCTION

Germanium-tin (Ge_{1-x}Sn_x) is an attractive material candidate for future integrated devices, such as high mobility transistors, photodetectors (PDs), and lasers [1]-[3]. For successful device applications, low resistivity and low leakage Ge_{1-x}Sn_x *p-n* junctions are required. Boron is often used as a *p*-type dopant in Ge. Through solid-phase epitaxial regrowth (SPER), active levels of 2-5.7×10²⁰ cm⁻³ were demonstrated [4]. We have reported that after BF₂⁺ implantation, boron can be activated during SPER at 400 °C in Ge_{1-x}Sn_x [5]. However, the crystallinity of the Ge_{1-x}Sn_x was not investigated. Ga is another *p*-type dopant in Ge or Ge_{1-x}Sn_x. An active level of 5.5×10^{19} cm⁻³ was reported in Ge_{1-x}Sn_x by *in-situ* epitaxial growth [6].

In this work, we demonstrated that 500 °C SPER can recover the crystallinity of $Ge_{0.975}Sn_{0.025}$ to the as-grown level. However, for $Ge_{0.92}Sn_{0.08}$, severe degradation of the crystallinity occurs after SPER. *In-situ* Ga doped $Ge_{0.915}Sn_{0.085}$ alloys were grown by MBE, and an electrical activation level of 4.3×10^{20} cm⁻³ was achieved, which is close to the solubility limit of Ga in Ge.

2. BF₂⁺ IMPLANTATION AND SPER

The Ge_{1-x}Sn_x alloys were grown at 170 °C by MBE. A BF₂⁺ implant of 1×10^{15} cm⁻² at 20 keV was carried out, followed by rapid thermal annealing at various temperatures. Fig. 1(a) shows that after annealing at 500 °C, the Ge_{0.975}Sn_{0.025} peak and related thickness fringes in XRD scan become similar to that of as-grown sample, indicating recovery of crystallinity. However, for the Ge_{0.92}Sn_{0.08} sample, a shoulder between Ge_{0.92}Sn_{0.08} and Ge peaks appears after 500 °C annealing, which may arise from Sn precipitation or surface segregation. These results suggest that SPER after implantation is not suitable for realization of high-quality *p*-type region in Ge_{1-x}Sn_x with x > 0.08.

3. IN-SITU GA DOPED GESN BY MBE

In-situ Ga doped Ge_{0.915}Sn_{0.085} alloys were also grown by MBE on n-type Ge(100) substrate. During growth, the temperatures of Ge and Sn cells were fixed, and that of Ga cell was tuned to achieve various Ga concentrations. 4 samples were grown with Ga cell temperature ranging from 540 to 820 °C. Fig. 2 shows the resistivity of Ge_{0.915}Sn_{0.085} samples with various Ga concentrations by micro four-point probe measurements. Infrared spectroscopic ellipsometry was then used to obtain the active Ga concentration and mobility separately. Ellipsometric angles Ψ and Δ were acquired at two angles of incidence (65° and 75°) from 0.06 to 0.6 eV. The infrared response of a *p*-type Ge_{1-x}Sn_x alloy is dominated by free carrier response. Fig. 3 shows the fits (Ref. [7]) to Ψ and Δ . The free carrier absorption was described by a Drude oscillator from which active Ga concentration was extracted. The infrared dielectric function for various *p*-doped Ge_{0.915}Sn_{0.085} alloys is shown in Figs. 4(a) and 4(b). As indicated by ε_2 , the free-carrier absorption increases with increasing Ga cell temperature, with the active Ga concentration ranging from ~10¹⁸ to 4.3×10^{20} cm⁻³.

Fig. 5 shows the electrical resistivity of *p*-type $Ge_{1-x}Sn_x$ alloys as a function of doping concentration. The results for bulk Ge, *in-situ* boron-doped $Ge_{1-x}Sn_x$ by CVD [7,8], and *in-situ* Ga-doped $Ge_{1-x}Sn_x$ by MBE [6] are also included. It is observed that the resistivity values of $Ge_{1-x}Sn_x$ samples follow the trend, but are slightly higher than those of *p*-type Ge bulk materials. These results suggest degradation of mobility in *p*-type $Ge_{1-x}Sn_x$ alloys, which is likely due to alloy scattering in the Ge-Sn system. With the *p*-type concentration increased to ~10²⁰ cm⁻³ or above, the ionized impurity scattering becomes severe, and the resistivity of $Ge_{1-x}Sn_x$ alloys is similar to that of Ge bulk materials.

Fig. 6 shows the (004) XRD scans of Ge_{0.915}Sn_{0.085} samples with various active Ga concentrations. Well-defined Ge_{0.915}Sn_{0.085} peak and clear thickness fringes can be observed with the active Ga concentration up to 1.6×10^{20} cm⁻³ (740 °C). Fig. 7(a) shows the cross-sectional TEM image of $Ge_{0.915}Sn_{0.085}$ sample with active Ga concentration of 1.6×10^{20} cm⁻³. High resolution TEM images [Figs. 7(b) and 7(c)] depict smooth surface and good Ge_{0.915}Sn_{0.085}/Ge interface. No obvious defect can be observed. With the active Ga concentration increasing to 4.3×10^{20} cm⁻² (820 °C), the Ge_{1-r}Sn_r peak shifts toward the Ge peak (Fig. 6), which indicated a reduction of Sn content. Fig. 8 shows the SIMS depth profiles of Ga and Sn with various active Ga concentrations. The Ga concentration in Fig. 8(a) was quantified by assuming that the $Ge_{10.915}Sn_{0.085}$ sample with an active Ga concentration of 1.7×10^{19} cm⁻³ (640 °C) is fully electrically active. The Sn content in Fig. 8(b) was quantified by XRD. The depth profiles of Ga and Sn are uniform in $Ge_{0.915}Sn_{0.085}$ layer with the active Ga concentration up to 1.6×10^{20} cm⁻³. However, with the active Ga concentration increased to 4.3×10^{20} cm⁻³, the Ga and Sn profiles become nonuniform, and both gradually increase toward the surface. These results suggest that when the incorporated Ga concentration exceeds the solid solubility limit, extra Ga atoms cannot be activated, and will lead to degradation of $Ge_{1-x}Sn_x$ crystallinity.

4. CONCLUSION

We demonstrated that BF_2^+ implantation and SPER is not suitable for realizing heavily *p*-type $Ge_{1-x}Sn_x$, due to the degraded crystalline quality. Heavily *p*-type $Ge_{1-x}Sn_x$ can be realized by *in-situ* Ga doping, with an active doping concentration of up to 4.3×10^{20} cm⁻³. The dependences of crystallinity and mobility on the active Ga concentrations were also investigated.

ACKNOWLEDGEMENT. This work was supported by Singapore National Research Foundation through the Competitive Research Program (Grant No: NRF-CRP6-2010-4).

References

- [1] P. Guo et al., JAP 114, 044510, 2013.
- [2] Y. Dong et al., TED 62, 128, 2015.
- [3] S. Wirth et al., Nature Photonics 9, 88, 2015.
- [4] S. Mirabella et al., APL 92, 251909, 2008.
- [5] G. Han et al., IWJT, 106, 2012
- [6] Y. Shimura et al., Thin Solid Films 520, 3206, 2012.
- [7] V. R. D'Costa *et al.*, *PRB* 80, 125209, 2009.
- [8] B. Vincent et al., APL 99, 152103, 2011.

Fig. 1. XRD (004) curves of BF_2^+ implanted (a) $Ge_{0.975}Sn_{0.025}$ and Fig. (b) $Ge_{0.92}Sn_{0.08}$ films after RTA at various temperatures for 5 $Ge_{0.92}Sn_{0.08}$ film, anneal cannot recover crystallinity *in-si* to as-grown level.

Fig. 4. (a) Real and (b) imaginary parts of infrared dielectric function of *p*-doped $Ge_{0.915}Sn_{0.085}$ films. The curves reveal strong free-carrier response.

Fig. 3. Measured and fitted Ψ and Δ from infrared ellipsometry for a Ge_{0.915}Sn_{0.085} film. An active Ga concentration of 1.6×10^{20} cm⁻³ was obtained from the Drude model.

Fig. 5 Electrical resistivity of *p*-type 1 $Ge_{1-x}Sn_x$ alloys as a function of doping 0 concentration.

Fig. 6. XRD (004) curves of $Ge_{0.915}Sn_{0.085}$ films with various *in-situ* Ga doping concentration.

Fig. 7. (a) The cross-sectional TEM image of Ga doped $Ge_{0.915}Sn_{0.085}$ film with an active Ga concentration of 1.6×10^{20} cm⁻³. HRTEM image of (b) surface region and (c) interface region between $Ge_{0.915}Sn_{0.085}$ and Ge.

(b) 10² **(a)** 10²⁴ Temperature of Ga cell Temperature of Ga cell 10 Ga concentration (cm^3) -∎- 540 °C -∎– 540 °C 10²² Sn composition (%) 640 °C 640 °C **10**¹ <mark>▲– 740 °</mark>C ▲-740 °C 10 - 820 °C 820 °C 10²⁰ **10⁻¹** 10^{-2} **10**¹⁸ **10⁻³** 10 50 150 50 0 100 0 100 150 Depth (nm) Depth (nm)

Fig. 8. SIMS depth profiles of (a) Ga and (b) Sn for $Ge_{0.915}Sn_{0.085}$ films with various *in-situ* Ga doping concentration, which was tuned by the temperature of Ga cell during growth.