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Abstract 

Lattice matched SiGeSn/GeSn hetero-PTFET with type-II 

staggered tunneling junction (TJ) is characterized by simulation. 

By tuning the material compositions, lattice matching and type-II 

band alignment at the Γ-point is obtained at SiGeSn/GeSn inter-

face. Hetero-PTFETs demonstrate a steeper SS and an enhanced 

ION compared to GeSn homo-PTFET, which is due to the modu-

lating effect of staggered TJ on band-to-band tunneling. 

1. Introduction 

Recently, GeSn has attracted extensive research interests as a 

TFET material because of its direct band-to-band tunneling 

(BTBT) and easy integration on Si platform [1], [2]. Although, 

experimental and theoretical studies on GeSn TFETs have ex-

ploited great progress, there is still lack of the exploration of GeSn 

based TFETs with type-II staggered tunneling junction (TJ), 

which can improve the on-state current ION while maintain steep 

subthreshold swing (SS) and low off-state current IOFF [3-9].  

In this work, SiGeSn/GeSn hetero p-channel TFET (het-

ero-PTFET) with type-II staggered TJ is designed and character-

ized by simulation. The different compositions of GeSn and Si-

GeSn are chosen to provide type-II band alignment at the Γ-point 

as well as lattice matching. Significant performance enhancement 

is achieved in hetero-PTFETs over GeSn homo devices.  

2. Band Structures of SiGeSn/GeSn and Device Simulation 

The energy band structures of GeSn and SiGeSn were calcu-

lated utilizing the nonlocal empirical pseudopotential method 

(EPM) [Fig. 1 (a)]. SiGeSn and GeSn used in this work are direct 

bandgap materials. For GeSn, pseudopotential factors were taken 

from Ref. [10]. While for SiGeSn, the pseudopotential factors 

were adjusted to make the calculated bandgaps at Γ and L points 

consistent with the data obtained by formula (1) with bowing 

parameters listed in Table I, 
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The band alignment at lattice matched SiGeSn/GeSn interface 

shown in Fig. 1(b) was calculated by Jaros’ theory [11], which has 

been widely used to calculate the band offsets for many hetero-

junctions. Relative to the valence band of Ge1-xSnx, the average 

valence band energies for Si1-y-zGeySnz are expressed as 

0.69x-0.48y+0.69z eV [12]. 

Fig. 2(a) presents the schematic of SiGeSn/GeSn het-

ero-PTFET. Carrier effective masses used in simulation were 

extracted from full bands of materials calculated by EPM. Lattice 

matched SiGeSn/GeSn heterojunction with type-II staggered band 

lineup [Fig. 2(b)], is used as the source/channel TJ. 2D 

self-consistent device simulations were carried out utilizing 

TCAD simulator, which implements a dynamic nonlocal tunnel-

ing algorithm. Quantum confinement model provided by software 

was taken into account.   

Table I Band parameters used in the calculation of band alignment at Si-

GeSn/GeSn interface [10], [12]-[14] 

Valley EGe 
(eV) 

ESi 

(eV) 
ESn 

(eV) 
bGeSi 

(eV) 
bGeSn 

(eV) 
bSiSn 

(eV) 

L 0.66 2.0 0.14 0.0 0.91 0.0 

Γ 0.795 4.06 -0.413 0.21 2.1 13.2 
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Fig. 1. (a) Energy band structures along L-Γ-X direction in the Brillouin 

zone of Ge0.90Sn0.10 (upper) and Si0.40Ge0.40Sn0.20 (lower) calculated by the 
nonlocal EPM. (b) Band alignment for lattice matched 

Si1-y-zGeySnz/Ge0.92Sn0.08, Si1-y-zGeySnz/Ge0.90Sn0.10, and 

Si1-y-zGeySnz/Ge0.88Sn0.12. Staggered heterojunction can be formed at Si-
GeSn/GeSn interface by increasing Sn composition in SiGeSn. 
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Fig. 2. (a) Schematic of SiGeSn/GeSn hetero-PTFET. (b) Schematic of the 

type-II staggered tunneling junction at source/channel interface. 

3. Results and Discussion 

Simulated |IDS|-VGS curves of lattice matched Si1-y-zGeySnz/ 

Ge1-xSnx hetero-PTFETs (x, y, z = 0.08, 0.33, 0.20, 0.10, 0.40, 0.20; 

and 0.12, 0.49, 0.20) and Ge1-xSnx homo devices (x = 0.08, 0.10, 

and 0.12) are shown in Fig. 3(a). Each hetero-PTFET demon-

strates lower leakage floor current, sharper turn-on characteristic, 

and enhanced drive current over its corresponding homo control 

transistor. The improvement in point and average SS is achieved 

in hetero-PTFETs as compared to homo devices [Fig. 3(b) and 

3(c)]. Point SS obtained at each VGS is defined as dVGS/d(lgIDS). 

The higher maximum IDS with sub-60 mV/decade SS is achieved 

in hetero-PTFET over homo device [Fig. 3(b)]. Average SS is 

extracted from |IDS|-VGS curves, where VGS various from VTH to the 

value of VTH-0.3 V. Here, the VTH is defined as the VGS at |IDS| of 

10-10 A/μm. Fig. 3(d) compares the ION of hetero-PTFETs and 

homo devices at |VDD|=0.3V, showing that hetero-PTFETs achieve 

much higher ION compared to the homo devices. An ION of 

22.87μA/μm is obtained in Si0.31Ge0.49Sn0.20/ Ge0.88Sn0.12 het-

ero-PTFET at |VDD| of 0.3 V, which is 2.3 times higher than that of 

Ge0.88Sn0.12 homo device, 9.94 μA/μm. 
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Fig. 3. (a) Simulated IDS-VGS curves for SiGeSn/GeSn hetero-PTFETs and 
GeSn homo devices. (b) and (c) indicating the superior SS in het-

ero-PTFETs over the GeSn homo devices. (d) Comparison of ION for 

hetero and homo devices with different compositions at VDD = - 0.3V. 

Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves 2.3 times higher ION 

as compared to Ge0.90Sn0.10 homo-PTFET. 

   To illustrate the modulation effect of type-II staggered het-

ero-junction on the BTBT, energy band diagram and carrier den-

sity distributions are extracted. Fig. 4(a) compares the energy 

band diagrams along source to channel direction for the 

Si0.40Ge0.40Sn0.20/Ge0.90Sn0.10 hetero- and Ge0.90Sn0.10 ho-

mo-PTFETs at |VDD|=0.3 V. Both devices demonstrate a similar 

tunneling barrier, indicating the tunneling barrier is not much 

affected by the presence of hetero TJ at the fixed |VGS-VTH|. Fig. 

4(b) depicts the carrier density profiles along source to channel 

direction at |VDD| of 0.3V. Hetero-PTFET achieves a more abrupt 

hole profile and a higher carrier density near TJ over the homo 

device. This also can be seen from the spatial distributions of car-

rier density [Fig. 5]. It has been reported that the more abrupt hole 

profile and higher hole concentration at TJ benefit the improve-

ment of BTBT rate in TFETs. From Fig. 5, we can see that the 

central regions of hole density in hetero-PTFET are closer to TJ 

compared to homo device, which contributes to shorter tunneling 

path and higher tunneling probability. 
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Fig. 4. (a) Energy band diagrams and (b) Carrier density profiles near 

surface along source to channel direction for Si0.40 Ge0.40Sn0.20/Ge0.90Sn0.10 

hetero-PTFET and Ge0.90Sn0.10 homo-PTFET at |VDS|=|VGS-VTH|=0.3 V. 
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Fig. 5. Contour plots of carrier density for Si0.40Ge0.40Sn0.20/Ge0.90Sn0.10 

hetero-PTFET and Ge0.90Sn0.10 homo device at VDS=VGS-VTH=-0.3V. 
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Fig. 6. Spatial distributions of GBTBT for Si0.40Ge0.40Sn0.20/Ge0.90Sn0.10 het-

ero-PTFET and Ge0.90Sn0.10 homo device at VDS=VGS-VTH=-0.3V. The het-

ero transistor demonstrates a larger peak GBTBT over homo device. 

The impact of hetero-junction on BTBT of devices in on state 

is further analyzed by plotting the distribution of carrier genera-

tion rate GBTBT (Fig. 6), which directly determines the magnitude 

of tunneling current. At |VDD|=0.3V, Si0.40Ge0.40Sn0.20/Ge0.90Sn0.10 

hetero-PTFET demonstrates a higher peak value of GBTBT com-

pared to the Ge0.90Sn0.10 homo transistor. It is also noticed that the 

maximum GBTBT centers in hetero-PTFET have a larger distribu-

tion area than that in homo device. We conclude that the afore-

mentioned two points contribute to the enhancement of tunneling 

current in hetero device in comparison with the homo-PTFET. 

4. Conclusions 

   SiGeSn/GeSn hetero-PTFET is designed and investigated. It is 

demonstrated that the modulation effect of type-II staggered het-

ero-junction on BTBT leads to a higher GBTBT in hetero-PTFETs 

over the homo devices, which contributes to higher ION and 

steeper SS in hetero-PTFETs. 
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