First Demonstration of β-Ga₂O₃ Schottky Barrier Diode with Field Plate Edge Termination

Kohei Sasaki^{1,2}, Masataka Higashiwaki², Ken Goto¹, Kazushiro Nomura³, Quang Tu Thieu³, Rie Togashi³, Hisashi Murakami³, Yoshinao Kumagai³, Bo Monemar^{3,4}, Akinori Koukitu³, Akito Kuramata¹ and Shigenobu Yamakoshi¹

¹ Tamura Corporation
2-3-1 Hirosedai, Sayama, Saitama 350-1328, Japan
² National Institute of Information and Communications Technology
4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
³ Tokyo University of Agriculture and Technology
2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
⁴ Linköping University
S-581 83 Linköping, Sweden
Phone: +81-4-2900-0045 E-mail: kohei.sasaki@tamura-ss.co.jp

Abstract

We fabricated a β -Ga₂O₃ Schottky barrier diode with field plate edge termination for the first time. The device had a high breakdown voltage of 920 V, with a specific on-resistance of 5.0 m Ω •cm² and forward voltage of 1.35 or 1.85 V at 100 or 200 A/cm². These device characteristics clearly indicate the great potential of Ga₂O₃ for power device applications.

1. Introduction

Gallium oxide (β -Ga₂O₃) has received a lot of attention as a power device material because it has excellent material properties [1] and high quality and low cost wafers can be fabricated using the melt-growth method. Recently, we reported the device characteristics of Ga₂O₃ Schottky barrier diodes (SBDs) using single-crystal β -Ga₂O₃ [2, 3]. Although these devices had good characteristics, they had slightly low breakdown voltages because edge termination for the anode electrode was not used. In this study, we fabricated and tested a high breakdown voltage Ga₂O₃ SBD utilizing field plate edge termination for the first time.

2. Experimental method

We used a Sn-doped n^+ -Ga₂O₃ (001) substrate that was 600-µm thick with N_d - N_a of 4×10^{18} cm⁻³ and prepared from a bulk crystal grown using the edge-defined film-fed growth method. The n^- -Ga₂O₃ drift layer with N_d - N_a of 1.1×10^{16} cm⁻³ was grown on the substrate at 1000°C by halide vapor phase epitaxy (HVPE) [4, 5]. The source gases were GaCl and O₂ transported by N₂ carrier gas. GaCl was generated in the upstream region of the reactor by the reaction between high-purity Ga metal and chlorine (Cl₂) gas at 850°C. SiCl₄ was simultaneously supplied during the growth as an *n*-type dopant gas. The growth rate of the Ga₂O₃ film was set at 10 µm/h. After the HVPE growth, chemical mechanical polishing (CMP) was performed to flatten the surfaces of the epitaxial film. The post-CMP drift layer thickness was about 8 µm.

Fig. 1 Schematic cross section of a Ga₂O₃ SBD.

Figure 1 shows a schematic cross-sectional view of the SBD structure. First, SiO₂ dielectric film of 320-nm thick was deposited on the *n*⁻Ga₂O₃ films by plasma-enhanced chemical vapor deposition. Then, a 200 μ m diameter Schottky contact hole was opened in the SiO₂ film by using buffered HF. Next, BCl₃ reactive ion etching was performed on the back side of the substrate, followed by evaporation of a Ti(20 nm)/Au(230 nm) ohmic metal stack. Finally, a Schottky anode electrode was fabricated by standard photolithographic patterning, evaporation of a Pt(15 nm)/Ti(5 nm)/Au(250 nm) stack, and liftoff. The field plate length was 20 μ m.

3. Results

Figures 2(a) and (b) show the forward current density-voltage (*J-V*) characteristics of the SBD at room temperature on linear and single logarithmic scales. From linear fits to the curve in Fig. 2(a) within the range of J=100-200

Fig. 2 Forward J-V characteristics of a Ga₂O₃ SBD plotted on (a) linear and (b) single logarithmic scales.

A/cm², the specific on-resistance ($R_{on}S$) was estimated to be 5.0 m Ω •cm². Forward voltages (V_F) at J=100 and 200 A/cm² were 1.35 and 1.85 V, respectively. An ideality factor of 1.01 was obtained from linear fits to the J-V curve in Fig. 2(b). The Schottky barrier height of 1.14 eV was estimated from the saturation current density. Figure 3 shows the reverse J-V characteristic at room temperature. A high breakdown voltage of 920 V was obtained. Note that the breakdown was catastrophic resulting in a burned anode electrode. These device characteristics clearly indicate the great potential of Ga₂O₃ as a material for high breakdown voltage devices.

Fig. 3 Reverse *J-V* characteristic of a Ga₂O₃ SBD.

4. Conclusions

We fabricated β -Ga₂O₃ SBDs with field plate edge termination. The device had a breakdown voltage over 900 V. In the future, we hope to demonstrate Ga₂O₃ SBDs with both a high breakdown voltage and low $R_{on}S$ by optimizing the *n*⁻-Ga₂O₃ film thickness and donor concentration.

Acknowledgements

This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Next-generation power electronics" (funding agency: NEDO).

References

- M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100 (2012) 013504.
- [2] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, IEEE Electron Device Lett. 34 (2013) 493.
- [3] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, J. Cryst. Growth 378 (2013) 591.
- [4] K. Nomura, K. Goto, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and A. Koukitu, J. Cryst. Growth 405 (2014) 19-22.
- [5] H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, Appl. Phys. Express 8 (2015) 015503.