Thermodynamic Knob for High Performance SiGe Gate Stack Formation

Che-Tsung Chang, Tomonori Nishimura, and Akira Toriumi

Department of Materials Engineering, The University of Tokyo 7-3-1 Hongo, Tokyo 113-8656, Japan Phone : +81-3-5841-1907, E-mail: ted@adam.t.u-tokyo.ac.jp

Abstract

We propose a processing guideline for SiGe gate stack formation based on the oxidation control at SiGe interface. We demonstrate very good C-V characteristics on SiGe with Si-cap free passivation by direct deposition of a dielectric film with optimal post-deposition annealing (PDA). From the results, we conclude the key to the interface passivation for SiGe gate stacks thermodynamically.

1. Introduction

SiGe gate stack formation process is quite different from that of Si or of Ge. In order to lower D_{it} , SiGe interface should be controlled in terms of both dielectric bulk and dielectric/SiGe interface qualities, particularly for Ge-rich SiGe. Thermal oxidation [1], plasma oxidation [2,3] and direct high-k (HK) dielectrics deposition [4] or nitridation [5-7] have been so far tried to achieve a better gate stack on SiGe. An excellent Si-cap free passivation on Si_{0.5}Ge_{0.5} has recently been reported [8]. However, the key to SiGe passivation still remains unclear from materials control viewpoint.

We have surveyed these studies, and have concluded that the following two requirements are essentially critical to control SiGe interface.

(i) How to preferentially oxidize Si of SiGe without GeO_x formation.

(ii) How to suppress Ge pile-up at the interface in the oxidation

The objective of this paper is to propose the thermodynamic guideline for SiGe gate stack formation to meet above requirements, and to demonstrate well-behaved C-V characteristics on Ge-rich SiGe.

2. SiGe oxidation process

In order to meet the requirement (i), we first investigate oxide stability difference between SiO_2 and GeO_2 , as shown in **Fig. 1**. The results were calculated by using a thermodynamics database [9]. This calculation result suggests that low oxygen pressure (P_{O2}) oxidation at relatively high temperature seems to be a way to preferentially oxidize Si without GeO_x formation. To confirm this, we oxidized Si_{0.5}Ge_{0.5} in various P_{O2} . The results are shown in **Fig. 2**. By lowering P_{O2} , it is shown that Si is preferentially oxidized, as expected.

To meet the requirement (ii), a thin SiO₂ growth, obtained in low P₀₂, is needed. An intrinsic challenge, however, is that grown SiO₂ is too thin for gate stacks. Hence, deposited dielectrics rather than oxidation is favored. However, for deposited films, O₂-PDA is generally mandatory to anneal out oxygen vacancies (V₀). This O₂-PDA could eventually deteriorate SiGe gate stacks by oxidized SiGe. To overcome this challenge, we deposit a dielectric film with low O₂ diffusivity and high O₂ affinity (low ΔG^0 in **Fig. 1**), which can keep P₀₂ at SiGe interface very low, and can stabilize bulk dielectric film and hopefully increase k value as well. Therefore, the question is what dielectric film with low O_2 diffusivity and high O_2 affinity is. On the other hand, taken the lesson from Y-doped GeO₂ [10], we expect that Y incorporation into SiO₂ could also lower O_2 diffusivity of SiO₂ because SiO₂ and GeO₂ share the same crystal structure. Additionally, Y₂O₃ is one of the most stable oxide in terms of the Gibbs free energy and also known to be stable on both Si and Ge, i.e. no metallic reaction between Y₂O₃ and Si or Ge. In this study, we select YSiO_x as a suitable candidate for SiGe passivation.

3. Experimental Details

The starting substrate was 110 nm Si_{0.5}Ge_{0.5}(100) on p-Si(100) with resistivity of 5-100 Ω -cm. After SiGe substrate cleaning, YSiO_x was deposited directly on the substrate by rf-co-sputtering of Y₂O₃ and SiO₂, followed by O₂-PDA. Various Y:Si ratios in YSiO_x, and O₂ concentrations, temperatures and durations in PDA were investigated. X-ray photoelectron spectroscopy (XPS) with AlK α source was used to study chemical composition of YSiO_x and the IL thickness.

4. Results and Discussion

We first report the O_2 diffusivity of sputtered YSiO_x and SiO₂. **Fig. 3** shows GeO_x thickness grown in PDA of deposited SiO₂ and YSiO_x stacks. The results indicate that no GeO_x forms in YSiO_x stacks while it does in SiO₂ ones, in O₂-PDA at 600°C. This fact strongly suggests that this process is quite promising for SiGe gate stack formation.

YSiO_x/SiGe MOS capacitors (MOSCAPs) were fabricated. **Fig. 4** shows bi-directional C-V characteristics of the Au/YSiO_x/SiGe MOSCAPs. From the results in **Fig. 2** and **Fig. 3**, we can expect a slight SiO₂ formation at the interface. If SiO₂ thickness is below 1 nm, the YSiO_x/SiGe stack will fulfill the aforementioned requirements (i) and (ii), which is then able to account for the decent C-V characteristics in **Fig. 4**. To confirm this, we measured X-sectional TEM and the IL of SiO₂ was about 1 nm as shown in **Fig. 5**. In addition, the YSiO_x/SiGe interface remains very sharp even after PDA at 600°C.

The dielectric constant of $YSiO_x$ was roughly estimated by changing $YSiO_x$ thickness. **Fig. 6** shows the good linearity in the relationship between EOT and physical thickness of $YSiO_x$, showing that the k value of $YSiO_x$ is about 13. This is higher than expected [10].

Further EOT scalability will be achieved by combining HfO₂-based dielectrics for advanced Si-CMOS.

5. Conclusion

We have proposed and demonstrated the thermodynamics-based engineering knob for SiGe passivation for the first time. Keys are, 1) Ge oxidation should be suppressed, and 2) The IL should be SiO₂ but Si oxidation should be as slight as possible. We have found that deposited films with low O₂ diffusivity such as YSiO_x, with optimal O₂-PDA can simultaneously meet those two requirements.

References

 F. K. LeGouse *et al.*, *JAP*, **65**, 1724 (1989). [2] P. W. Li *et al.*, *APL*, **63**, 2938 (1993). [3] M. Mukhopadhyay *et al.*, *APL*, **65**, 895 (1994). [4] S. Pal *et al.*, *JAP*, **90**, 4103 (2001).
J. Huang *et al.*, *APL*, **88**, 143506 (2006). [6] J. Huang *et al.*, *APL*, **90**, 023502 (2007). [7] J. Han *et al.*, *APE*, **6**, 051302 (2013). [8] P. Hashemi *et al.*, *IEDM* (2014). [9] See www.outotec.com/hsc for HSC CHEMISTRY software 6.1, Outotec Research Oy, Pori, Finland, 2006. [10] C. Lu *et al.*, *APL*, **104**, 092909 (2014).

Fig. 1 The Ellingham diagram. GeO_2 formation becomes unlikely as P_{O2} decreases while SiO_2 remains stable. This way offers a pathway to avoid Ge oxidation on SiGe.

Fig. 2 Ge oxidation rate of SiGe in various P₀₂. By reducing P₀₂, Ge oxidation rate is dramatically suppressed. This result confirms the thermodynamic prediction shown in **Fig. 1**.

Fig. 3 Ge oxidation rate of SiGe during $O_2(1 \text{ atm})$ -PDA in SiO₂ and YSiO_x stacks. The physical thickness of sputtered SiO₂ and YSiO_x were both 5 nm. In case of YSiO_x, no Ge oxidation is observed. This is the first observation on SiGe to our knowledge, and is the key results to achieve well-behaved SiGe gate stacks.

Fig. 4 The C-V curves of an $YSiO_x(Y:Si=1:1)/SiGe MOSCAP$ with PDA at 600°C in 1 atm O₂ for 30s. Au and Al are used as top and back contacts, respectively. It was found that PDA at higher temperatures led to larger D_{it}, which might be due to Ge oxidation, while PDA at lower temperatures gave rise to bigger hysteresis possibly due to remaining oxygen vacancy in the bulk (data not shown).

Fig. 5 (a) A TEM image of the YSiO_x/SiGe MOSCAP in Fig. 4. (b) The zoom-in image of the YSiO_x/IL(SiO₂)/SiGe interface. This shows the sharp YSiO_x/SiGe interfaces of the YSiO_x/SiGe MOSCAP even after PDA at 600°C. The thickness of IL of SiO₂ is estimated to be around 1 nm.

Fig. 6 EOT vs physical thickness to estimate the dielectric constant of $YSiO_x(Y:Si=1:1)$ on SiGe MOSCAPs with PDA at 600°C in 1 atm O₂ for 30s. It indicates that k~13, which is higher than as expected, because k of Y_2O_3 is around 12. It might be due to the molar volume shrinking in Clausius-Mossotti relationship. Additionally, the thickness of IL(SiO₂) is extrapolated to be 0.9 nm, which is consistent with the TEM image as shown in **Fig. 5**.