Impact of La$_2$O$_3$ Interfacial Layers on InGaAs MOS Interface Properties in ALD Al$_2$O$_3$/La$_2$O$_3$/InGaAs Gate Stacks

C.-Y. Chang1,2, M. Takenaka1, and S. Takagi1,2

1The Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0032, Japan, 2JST-CREST

Phone: +81-3-5841-6733, Fax: +81-3-5841-8564, E-mail: cychang@mosl.et.t.u-tokyo.ac.jp

Abstract

We examine the electrical and physical properties of ALD La$_2$O$_3$/InGaAs and Al$_2$O$_3$/La$_2$O$_3$/InGaAs MOS interfaces. An InGaAs interface with thick ALD La$_2$O$_3$ provides low interface state density (D_{it}) with the minimum value of 3×10^{11} cm$^{-2}$eV$^{-1}$, while slow traps in La$_2$O$_3$ cause the large hysteresis. It is found, on the other hand, that Al$_2$O$_3$/0.4nm (10 cycle) La$_2$O$_3$/InGaAs gate stacks can realize D_{it} lower than the conventional Al$_2$O$_3$/InGaAs MOS interfaces, with maintaining small hysteresis.

1. Introduction

High D_{it} at InGaAs MOS interfaces is still a critical issue for MOS-based InGaAs devices. It has recently been reported [1-3] that La$_2$O$_3$ on InGaAs can improve the MOS interface quality and that TiN/Al$_2$O$_3$/InGaAs gate stacks with D_{it} of 8×10^{11} cm$^{-2}$eV$^{-1}$ can be realized by using EB-deposited La$_2$O$_3$ and in-situ TiN/W metal gate with an optimized annealing. However, ALD La$_2$O$_3$/InGaAs MOS interface properties have not been fully examined yet. Thus, in this study, we study the electrical and physical properties of ALD La$_2$O$_3$/InGaAs MOS capacitors and systematically examine the effects of inserting thin La$_2$O$_3$ as an interfacial layer on the InGaAs MOS interface properties in the Al$_2$O$_3$/La$_2$O$_3$/InGaAs gate stacks.

2. Experiments

We fabricated MOS capacitors on Si-doped n-In$_{0.53}$Ga$_{0.47}$As ($N_D \sim 5 \times 10^{15}$ cm$^{-2}$) grown on (100) n-InP. After sulfur pre-treatment in a (NH$_3$)$_2$S solution, La$_2$O$_3$ and Al$_2$O$_3$ films were deposited by ALD. La$_2$O$_3$ ALD was performed at the deposition temperature of 150$^\circ$C by using La(PrCp)$_3$ and H$_2$O as the precursors. Also, Al$_2$O$_3$ ALD was performed at 250$^\circ$C by using Al(CH$_3$)$_3$ (TMA) and H$_2$O. Au and Al were deposited by thermal evaporation as the gate metal and the back contact, respectively. Post metallization annealing (PMA) in N$_2$ at 300$^\circ$C for 1 min was performed for all the MOS capacitors.

3. Results and discussions

The C-V curves of the ALD La$_2$O$_3$/InGaAs MOS capacitors with La$_2$O$_3$ thickness of 8.2, 5.2 and 2.9 nm are shown in Fig. 1. The large hysteresis in the 8.2 nm La$_2$O$_3$/InGaAs MOS capacitor is attributed to a large amount of slow traps in the La$_2$O$_3$ films. The decrease in hysteresis with thinning the La$_2$O$_3$ thickness is attributable to the reduction in the surface density of traps in La$_2$O$_3$. The energy distribution of D_{it} estimated by the conductance method for the 2.9 nm La$_2$O$_3$/InGaAs MOS capacitor is shown in Fig. 2 with the reported D_{it} value of TiN/W/La$_2$O$_3$/InGaAs [2]. The present La$_2$O$_3$/InGaAs MOS capacitor is found to have quite low D_{it} of 3×10^{11} cm$^{-2}$eV$^{-1}$. These results indicate that ALD La$_2$O$_3$ can provide the excellent passivation effect for InGaAs surfaces with low D_{it}, while a large amount of slow traps included in La$_2$O$_3$ can be a critical issue for La$_2$O$_3$/InGaAs interfaces.

Therefore, we have combined ultrathin La$_2$O$_3$ interfacial layers with Al$_2$O$_3$ capping layers in order to simultaneously satisfy small hysteresis and low D_{it} in InGaAs MOS interfaces. Fig. 3 shows the C-V curves of Al$_2$O$_3$/InGaAs gate stacks as a parameter of the La$_2$O$_3$ ALD cycle numbers from 0 to 40 cycles (2.9nm). It is found that the hysteresis is small for the thin La$_2$O$_3$ interfacial layers (10 cycles: 0.4 nm) and becomes larger with an increase in the cycle numbers and the thickness of La$_2$O$_3$. This result confirms us that the hysteresis is attributable to slow traps in La$_2$O$_3$. Fig. 4(a) and (b) show the energy distributions of D_{it} of the Al$_2$O$_3$/La$_2$O$_3$/InGaAs gate stacks as a parameter of the La$_2$O$_3$ ALD cycle numbers and the La$_2$O$_3$ ALD cycle number dependence of D_{it} at the surface energy of 0.1 eV from the midgap (E - E_F), respectively. It is found that the insertion of the La$_2$O$_3$ interfacial layer reduces D_{it} and that the increase in the La$_2$O$_3$ thickness decreases D_{it}. These results clearly demonstrate the effectiveness of the Al$_2$O$_3$/La$_2$O$_3$/InGaAs gate stacks. On the other hand, the D_{it} values of Al$_2$O$_3$/InGaAs with comparatively-thick (2.9nm) La$_2$O$_3$ are not as low as those of La$_2$O$_3$/InGaAs. On the other hand, Fig. 5(a) and (b) show the energy distributions of D_{it} of the Al$_2$O$_3$/La$_2$O$_3$ (0.4nm)/InGaAs gate stacks as a parameter of the capping Al$_2$O$_3$ thickness and the Al$_2$O$_3$ thickness dependence of D_{it} at 0.1 eV (E - E_F), respectively. It is found that D_{it} of Al$_2$O$_3$/La$_2$O$_3$ (0.4nm)/InGaAs gate stacks is reduced with a decrease in the Al$_2$O$_3$ thickness. The findings in Fig. 4 and Fig. 5 suggest some reaction of Al$_2$O$_3$ with the La$_2$O$_3$ interfacial layer, which leads to the D_{it} increase.

We analyzed Au/Al$_2$O$_3$/La$_2$O$_3$/InGaAs gate stacks by TEM and EDX in order to evaluate the physical structure. Fig. 6 shows TEM images of the Au/Al$_2$O$_3$/InGaAs and the Au/Al$_2$O$_3$/La$_2$O$_3$/0.4 nm/InGaAs gate stacks. It is observed for the Au/Al$_2$O$_3$/La$_2$O$_3$/InGaAs gate stacks that there are two insulating layers. In addition, the thickness of the lower layer 1.5nm is much thicker than 0.4 nm, suggesting any interface reaction between La$_2$O$_3$ and Al$_2$O$_3$. To clarify the compositions of the insulators, the depth profile of In, Ga, As, Al and La were analyzed by EDX. Fig. 7 shows the depth profiles of the atomic percentages of In, Ga, As, Al and La of Au/La$_2$O$_3$ (2.9nm)/InGaAs and Au/Al$_2$O$_3$ (3.5nm)/La$_2$O$_3$ (0.4nm)/InGaAs. It is found in Fig. 6(a) that La$_2$O$_3$ is intermixing with InGaAs and that In, Ga and As diffuse deeply into La$_2$O$_3$. Such an intermixing reaction between La$_2$O$_3$ and InGaAs might result in low D_{it} at La$_2$O$_3$/InGaAs.
MOS interfaces [2], while it may also cause a large amount of slow traps in La$_2$O$_3$. It is found in Fig. 6(b) that Al$_2$O$_3$ is intermixing with La$_2$O$_3$ and that Al is diffused through the MOS interface even into InGaAs. As a result, the experimental finding of higher D_h of the sufficiently-thick Al$_2$O$_3$/La$_2$O$_3$/InGaAs interface than that of the La$_2$O$_3$/InGaAs can be explained by the modulation of the La$_2$O$_3$/InGaAs MOS interface due to Al intrusion in the MOS interface.

4. Conclusions

It has been found that the La$_2$O$_3$/InGaAs interfaces provide recorded-low D_h of $\sim 3 \times 10^{11}$ cm$^{-2}$·eV$^{-1}$ as the InGaAs MOS interfaces, while slow traps included in La$_2$O$_3$ cause the large hysteresis. On the other hand, the Al$_2$O$_3$/ultrathin La$_2$O$_3$/InGaAs gate stacks can realize D_h lower than in the conventional Al$_2$O$_3$/InGaAs MOS interfaces with maintaining small hysteresis.

Acknowledgements

We would be grateful to Drs. O. Ichikawa, T. Osada and M. Hata in Sumitomo Chemical Co., Ltd. for their support to provide InGaAs epitaxial wafers.

References

Fig. 1. C-V curves of ALD-deposited La$_2$O$_3$/InGaAs MOS capacitors with La$_2$O$_3$ thickness of (a) 8.2, (b) 2.9 nm La$_2$O$_3$/InGaAs MOS capacitors.

Fig. 2. D_h of 2.9 nm La$_2$O$_3$/InGaAs MOS capacitors.

Fig. 3. C-V curves of Al$_2$O$_3$ (3.5nm)/La$_2$O$_3$/InGaAs gate stacks with the cycle numbers of La$_2$O$_3$ as (a) 0 cycle, (b) 10 cycle (0.4nm) and (c) 40 cycles (2.9nm).

Fig. 4. (a) D_h of the Al$_2$O$_3$ (3.5nm)/La$_2$O$_3$/InGaAs gate stacks as a parameter of the Al$_2$O$_3$ ALD cycle numbers, and (b) the La$_2$O$_3$ ALD cycle number dependence of D_h of Al$_2$O$_3$ (3.5nm)/La$_2$O$_3$/InGaAs at $E - E_c = 0.1$ eV.

Fig. 5. (a) D_h of Al$_2$O$_3$/La$_2$O$_3$ (0.4nm)/InGaAs gate stacks as a parameter of the Al$_2$O$_3$ ALD cycle numbers, and (b) the Al$_2$O$_3$ ALD cycle number dependence of D_h of Al$_2$O$_3$/La$_2$O$_3$ (0.4nm)/InGaAs at $E - E_c = 0.1$ eV.

Fig. 6. TEM image of (a) Au/La$_2$O$_3$ (3.2nm)/InGaAs and (b) Au/Al$_2$O$_3$ (3.5nm)/La$_2$O$_3$ (0.4nm)/InGaAs gate stacks.

Fig. 7. Depth profile of atomic percentages of In, Ga, As, Al and La by EDX analysis of (a) Au/La$_2$O$_3$ (2.9nm)/InGaAs and (b) Au/Al$_2$O$_3$ (3.5nm)/La$_2$O$_3$ (0.4nm)/InGaAs.