Two Dimensional Si-Based Semiconductor Si_{1-Y}C_Y : C Atom Induced Band Structure Modulation at Visible Region

T. Mizuno, Y. Nagamine, U. Omata, Y. Suzuki, W. Urayama, T. Aoki, and T. Sameshima*

Kanagawa Univ., Hiratsuka, Japan (mizuno@info.kanagawa-u.ac.jp), * Tokyo Univ. of Agric. and Tech., Koganei, Japan

Abstract

We experimentally studied C atom impact on band structure modulation in 2D silicon carbon alloy Si1-yCy fabricated by hot C⁺ ion implantation into (100) SOI substrate in a wide range of Y. Photoluminescence (PL) method shows that bandgap E_G and PL intensity I_{PL} of 2D-Si_{1-Y}C_Y drastically increase with increasing Y in high Y (≥ 0.003), and thus we demonstrated higher E_G of 2.5eV and the visible I_{PL} of wavelength λ less than 500nm. In addition, graphitic C peak at 1500 cm⁻¹ is also confirmed at *Y*=0.07 by UV-Raman analysis. However, even However, even in low $Y(<10^{-3})$, I_{PL} of 2D-Si_{1-Y}C_Y also increase with increasing Y, which is caused by the compressive strain, but Y dependence of E_G is very small. Thus, E_G of 2D-Si_{1-Y}C_Y can be controlled by **2D-Si**_{1-Y} C_Y thickness d_S and Y.

I. Introduction

2D Si layer is a key technology for realizing extremely-thin SOIs (ETSOIs) and FinFET CMOS [1], as well as Si photonics [2]. We experimentally demonstrated phonon confinement effects (PCE) and E_G expanding due to electron confinement [3]-[5] in 2D-Si layers. A PL peak photon energy E_{PH} of a fully relaxed (100)2D-Si layer without a surface oxide [5] agrees well with theoretical E_G value [6]. Thus, E_G of (100)2D-Si can be precisely obtained by PL method.

 E_G of (100)2D-Si can be controlled by $d_S[5]$, [6], but is still lower than 1.9eV whose λ is longer than 650nm. However, to realize visible Si photonics as well as source hetero structures (SHOT) which can inject high velocity carrier into channel from high E_G source regions [7], [8], it is necessary to develop a new technology for higher E_G without controlling d_S . In 3D-Si_{1-Y}C_Y, E_G can increase with increasing Y [9]-[11], and PL intensity I_{PL} also increases with increasing Y [9]. Therefore, $2D-Si_{1-Y}C_{Y}$ is a new candidate for E_G and $\tilde{\lambda}$ engineering for future CMOS and Siphotonics.

In this work, we experimentally studied the impact of Y on E_G modulation of 2D-Si_{1-Y}C_Y fabricated by ¹²C⁺ hot ion-implantation into (100)SOIs. We obtained the Y dependence of E_G modulation of 2D-Si_{1-Y}C_Y by PL method in a wide range of Y (10⁻⁵<Y \leq 0.07), and demonstrated higher E_G of 2.5eV and visible λ .

II. Experiment for 2D-Si_{1-Y}C_Y by Hot C⁺ Implantation

High quality 2D-Si_{1-v}C_Y layers with a wide range of Y were fabricated by the combination of 1) $^{12}C^+$ hot ion implantation technique [12] into (100) bonded SOI substrate at higher than 900°C, and 2) two-step (low-temperature T after high-T oxidation) thermal oxidation technique [3] (**Fig.1**). 0.5-nm thick 2D-Si_{1-Y}C_Y layers with 10^{-5} < *Y*≤0.07 were successfully formed in this work.

SIMS analysis (Fig.2) shows that carbon density N_C in 8.5nm Si locally condenses at two interfaces of the BOX and SiO₂. However, in a d_s (=distance between the two interfaces) limited case of 2D-Si, N_C of 2D-Si can be assumed to be peak N_C value at the interface and uniform. Peak Nc rapidly decreases by oxidizing SOI, because of small segregation coefficients m_C of carbon at the Si/SiO₂ interface. The maximum and minimum Y of 0.5-nm 2D-Si_{1-Y}C_Y can be estimated by SIMS analysis and Eq.(1) (Fig.3 caption), and be achieved to be about 0.07 and 10⁻⁵, respectively, using various ¹²C⁺ dose (5×10¹² $\le D_C \le 2 \times 10^{16}$ cm⁻²).

We analyzed the E_G properties of 0.5nm thick 2D-Si_{1-Y}C_Y layers evaluated by PL method, where excitation laser energy hv was varied from 2.3 to 3.8eV at room temperature [3]. Laser power P_L was set to be 1mW to compress the P_L heating of Si [3], and the laser diameter was 1µm. Phonon properties of 2D-Si_{1-Y}C_Y layers were measured by UV (325-nm)/visual (532-nm) Raman spectroscopy. We observe no degradation of the FWHM of Si peak even at $D_{C^{=}}$ 2×10^{16} cm⁻², which is the benefit of hot C⁺ implantation technique.

III. Large E_G Modulation by C Atom

A. PL Si-C Peak in 2D-Si1-YCY

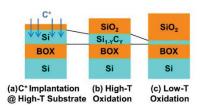
UV-Raman analysis shows double peaks of D and G bands of graphitic C at about 1500cm⁻¹ [11] (Fig.3) only in Y=0.07, and thus silicon-carbon alloys were successfully fabricated.

Very large and double-peak PL spectra excited by 2.3eV laser can be newly observed at $Y \ge 0.003$ (Fig.4). The lower E_{PH} peak is

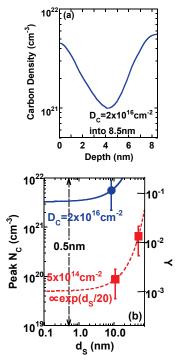
attributable to 2D-Si [3], but new higher E_{PH} is considered to be PL from the 2D Si-C alloy. IPL of both Si and Si-C peaks drastically increases with increasing Y (**Figs.4**, **5**) in $Y \ge 0.003$, compared to I_{PL} at Y=0; I_{PL0} , resulting in $I_{PL}/I_{PL0} \propto Y^{1.4}$ (**2**) (**Fig.5**). Especially, I_{PL}/I_{PL0} at Y=0.07 reaches over 20, which is very suitable for Si photonics. Here, $I_{PL} \propto \alpha \eta = \alpha/(1 + \tau_R/\tau_{NR})$ (**3**), where α , η , τ_R , and τ_{NR} are absorption coefficient, luminescence efficiency, radiative and non-radiative life times of electrons recreatively [15]. radiative, and non-radiative life times of electrons, respectively [15]. Thus, when η =const., α of 2D-Si_{1-Y}C_Y; α_{SC} is estimated to be about 26 times as large as that of 2D-Si (α_{2D}) which is also two orders of magnitude larger than that of 3D-Si (α_{3D}) [14], resulting in $\alpha_{SC}/\alpha_{3D}\approx3300$ (**Fig.5**). However, the I_{PL} at $Y\approx3\times10^{-3}$ has the minimum value (**Fig.5**), which is possibly due to the τ_{NR} decrease with increasing *Y*, because of C⁺ ion damage.

Moreover, PL spectrum of 2D-Si_{0.93}C_{0.07} in visible region strongly depends on $h\nu$ (Fig.6), because electrons cannot be generated by lower $h\nu$ (E_G > $h\nu$). When $h\nu$ =3.8eV, we can newly observe visible PL spectrum. The peak E_{PH} reaches 2.5eV, resulting in peak- $\lambda \approx 500$ nm. PL spectrum tail can be also detected even in higher than 3eV. However, since the PL peak was very broad in Y < 0.07, E_G of 2D-Si_{1-Y}C_Y is almost independent of Y, but is higher than E_G of $3D-Si_{1-Y}C_Y$ [9] (Fig.7). Consequently, $2D-Si_{1-Y}C_Y$ with high Y is a very promising for visible Si-photonics and SHOT.

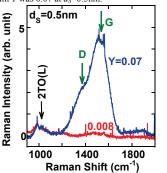
B. PL Si-Peak in 2D-Si_{1-Y}C_Y Even when $Y=4\times10^{-4}$, we can observe I_{PL} enhancement $(I_{PL}/I_{PL0}=1.66)$ and E_G expanding (=1.8eV) (Fig.8). However, no PL Si-C peak was observed in Y<0.001 (Fig.8). Lattice constant 2D-Si_{1-Y} \hat{C}_{Y} *a_{SC}* also decreases with increasing *Y*, compared with that of 2D-Si as [11]. Thus, the compressive strain ε_C in 2D-Si_{1-Y}C_Y increases with increasing Y (Fig.9), according to ε_C formula of 3D-Si_{1-Y}C_Y[11]; $\varepsilon_C(Y) = (a_s - a_{sc}(Y))/a_s = (-0.24Y + 0.057Y^2)/a_s$ (4). So, residual tensile strain $\varepsilon_7(Y)$ of 2D-Si, which is applied by the large difference of expansion coefficient between SiO₂ and 2D-Si [5], can be relaxed by the equations of Eq.(4) and $\varepsilon_T(Y) = \varepsilon_{T0}$ $\varepsilon_c(Y)$ (5) (ε_{T0} is the residual tensile strain (0.33%) in 0.5-nm 2D-Si) ((Fig.9) without etching SiO₂. Thus, using $E_G(Y) \propto$ $\exp((\varepsilon_{T0} - \varepsilon_c(Y))/\varepsilon_0)$ (6), where ε_0 the fitting parameter (0.22%) [5], E_G rapidly increases with increasing Y even in Y<10⁻³ (Fig.10), which can be well explained by the ε_T relaxation induced E_G expansion by Eq.(6). Thus, even small Y (<10⁻³) can affect the expansion by Eq.(6). Thus band structure of 2D-Si_{1-Y}Cy

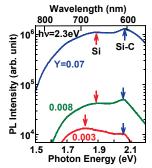

C. Device Design for High E_G and Visible Photon Emission

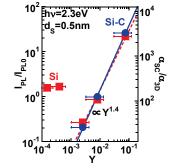
According to the above discussions and our previous works [4], [5], it is possible to control higher E_G and shorter photon emission of 2D Si-based semiconductor, by designing only three key parameters of d_s , SiO₂ thickness T_{OX} , and Y. For example, when $d_s \ge 0.5$ nm (Fig.11), thinner d_s in 2D-Si is required to realize band structures with $1.1 \le E_G \le 2.1 \text{ eV}$ or $\lambda \ge 600 \text{ nm}$ [4]. Especially in the case of $1.7 < E_G \le 2.1 \text{ eV}$, the 2D-Si must be relaxed by thinning T_{OX} In addition, to realize $E_G>2.1 \text{eV}$ ($\lambda < 600 \text{nm}$), a 2D silicon-[5]. carbon alloy technology is strongly necessary.

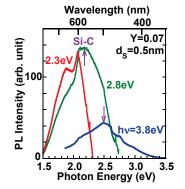

IV. Conclusion

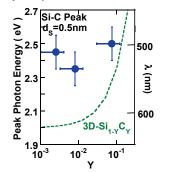
We experimentally studied C content effects on band structure modulation in a 0.5-nm 2D-Si_{1-Y}C_Y layer fabricated by C⁺ hot ion modulation in a 0.3-nm 2D-sit-YCY tayer fabricated by C flot for implantation technique into (100)SOI. PL can be detected in a wide range of $10^{-5} < Y \le 0.07$. I_{PL} and E_G of 2D-Sit-YCY rapidly increases with increasing Y, and E_G of 2.5eV and visible λ of 500-nm can be achieved at Y=0.07. Consequently, we can precisely design a future 2D device with various high- E_G and visible λ , by

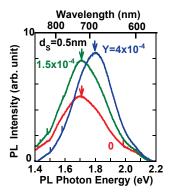

design a future 2D device with various high- E_G and visible λ , by controlling only three parameters of d_S , T_{OX} , and Y. Acknowledgement: We would like to thank Prof. J. Nakata and Dr. Y. Hoshino of Kanagawa Univ. for supporting carbon ion implantation. **References**:[1] J.-P.Colinge, *SOI Tech.*, (Kluwer) 2004. [2] S. Saito, IEDM 2008, Paper 19.5. [3] T. Mizuno, JJAP 51, 02BC03, 2012. [4] T. Mizuno, JJAP 52, 04CC13, 2013. [5] T. Mizuno, JJAP 54, 4DC02, 2015. [6] B. K. Agrawal, APL 77, 3039, 2000. [7] T.Mizuno, TED 52, 2690, 2005. [8] K.-J. Chui, TED 54, 249, 2007. [9] L.R. Tessler, Phys. Rev. B, 52, 10962, 1995. [10] W. Liu, APL 78, 37, 2001. [11] S.T. Pantelides ed., *Silicon-Germanium Carbon Alloys*, (Taylor&Francis), 2002. [12] T. Mizuno, SDM, p.96, 2013. [15] S. M. Sze, *Phys. of Semiconductor Devices* (Wiley), 2007.

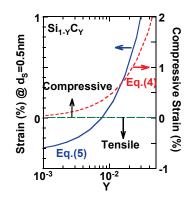

Fig.1 Schematic fabrication for 2D-Si₁₋₇C₇ layers. (a) After $^{12}C^+$ implantation into 1000°C (100)SOI substrate, (b) Si was thinned by 1000°C oxidation. D_C was varied from 5×10^{12} to 2×10^{16} cm⁻². (c) Additional 900°C oxidation was carried out to form 0.5nm-region thick Si₁₋₇C₇ layer, resulting in $10^{-5} \le Y \le 0.07$.

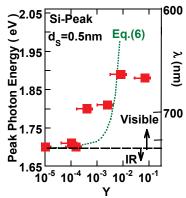

Fig.2 (a) SIMS (solid line) results of N_C (dashed line) just after hot C^+ ion implantation into 8.5-nm SOI which is the minimum thickness for SIMS, where D_C is 2×10^{16} cm². (b) Experimental peak N_C at the Si/BOX interface with error bars (about 60%) due to SIMS accuracy which is very low at the interface, where $D_C=2\times10^{16}$ (circle) and 5×10^{14} cm⁻² (triangles). N_C decreases with oxidizing Si, because of the small m_C at SiO₂/Si. d_S dependence of $N_C(d_S)$ can be obtained by the following 1D-differential equation: $dN_C/dx \propto N_C(x)$ resulting in $N_C(d_S) = N_0 \exp(d_S/d_0)$ (1) (solid line), where N_0 which depends on D_C and fitting d_0 (=20m) is constant. Solid and dashed lines show the estimated d_S dependence of peak N_C by Eq.(1). As a result, the right axis shows that the maximum Y was 0.07 at $d_S=0.5$ m.


Fig.3 UV-Raman spectra at Y of 0.07 (blue line) and 0.008 (red line), where ds=0.5nm. Double Raman peaks at Y=0.07 are attributable to D (1340cm⁻¹) and G (1500cm⁻¹) bands of graphitic C [11], whereas low Y sample shows no C band. Raman peak at about 1000cm⁻¹ shows the phonon mode of Si 2TO(L) [13].


Fig.4 PL spectra excited by 2.3eV laser as a function of Y at $Y \ge 0.003$ condition, where $d_S=0.5$ m. Lower and upper axes show PL photon energy and wavelength, respectively. Arrows show peak I_{PL} which are attributable to Si and Si-C alloy.


Fig.5 Peak I_{PL} of 2D-Si₁₋₃C₂ normalized by that of 2D-Si; I_{PL0} vs. *Y*, where $h \nu$ =2.3eV and d_s =0.5nm. The right axis shows the estimated α_{SC} of 2D-Si₁₋₃C₂ normalized by α_{2D} of 3D-Si. Circles and squares show Si-C and Si peaks, respectively. Solid and dashed lines shows the fitting curves of $I_{PL} \propto Y^{1.4}$ in Y>10⁻³, where the correlation coefficient was about 1. Error bars show the *Y* accuracy (60%) obtained by SIMS.


Fig.6 Excitation laser energy dependence of PL spectra at Y=0.07 in visible region, where $d_s=0.5$ m. Blue, green, and red lines show the data excited by hv of 3.8, 2.8, and 2.3eV, respectively.


Fig.7 *Y* dependence of E_G (left axis) and λ (right axis) at Si-C peak (circles), where $h\nu$ =3.8eV and d_S =0.5nm. Dashed line shows the data of 3D-Si_{1-Y}C_Y [9].

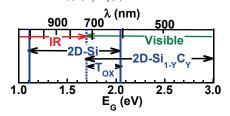

Fig.8 PL spectra as a function of *Y* in low *Y* condition $(\le 4 \times 10^{-4})$, where hv=2.3eV and $d_S=0.5$ nm. I_{PL} also increases with increasing *Y*, and E_G at $Y=4 \times 10^{-4}$ increases even at $Y \le 0.1\%$.

Fig.9 *Y* dependence of estimated strain (solid line) of 0.5nm Si₁₋₃C_Y by Eq.(5) and calculated compressive-strain (dashed line) of 3D-Si₁₋₃C_Y[11] by Eq.(4).

Fig.10 *Y* dependence of E_G (left axis) and λ (right axis) at peak I_{PL} of Si (squares), where $h \models 2.3 \text{eV}$ and $d_s = 0.5 \text{nm}$. Dotted lines shows the tensile strain dependence of E_G model in 2D-Si_{1-Y}C_Y by Eq.(6).

Fig.11 Device design for realizing higher E_G and visible λ in 2D-Si_{1-X}C_Y and 2D-Si, where $d_S \ge 0.5$ mm. Lower and upper axes show E_G and λ , respectively. There are only three key parameters of d_S , T_{OX} , and Y for realizing various E_G in 2D-Si device.