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Abstract 

Transition oxide-based resistive switching devices 

(TMO-ReRAM）have emerged as the leading candidate 

to realize the synapse functions for neuromorphic 

computing. This paper will address the design and op-

timization of TMO-ReRAM based synaptic devices. The 

impacts of the synaptic devices features on the perfor-

mances of neuromorphic visual system are discussed. 

The possible solutions are presented to suppress the 

intrinsic variation of the TMO-ReRAM based synaptic 

devices to achieve high recognition accuracy and effi-

ciency of neuromorphic visual systems. 

1. Introduction 

Brain-inspired neuromorphic computing is an attractive 

paradigm that complements the von Neumann architecture. 

Developing hardware based artificial neural network di-

rectly imitate human’s brain is the best way to realize neu-

romorphic computing with low cost and low energy con-

sumption [1]. To realize the synaptic function in the artifi-

cial neuron network, transition-metal oxide based resistive 

random access memory device (TMO-ReRAM) is utilized 

due to its nonvolatile data storage and data computing ca-

pability and the simple device structure [2]. However, spe-

cific device design is still required to fight against parame-

ter variability, uncontrolled switching behavior, and other 

non-ideal effects on the neuromorphic computing systems. 

In this paper, we will introduce and review our work on the 

design and optimization of TMO-ReRAM based synaptic 

devices to meet the requirements of neuromorphic systems. 

2. Device Optimization 

A neural network is consisted of multi-layered neurons 

and synapses connecting each neuron, as illustrated in Fig.1. 

Cross-point ReRAM array works as the synapses and the 

resistive switching behavior represents the modification of 

synaptic weighting process. Although binary synapse can 

be used for pattern recognition [3], multilevel switching 

ability is crucial for ReRAM to change different weightings. 

However, the generation of oxygen vacancies is usually 

related to an avalanching process, resulting in the formation 

of clustered oxygen vacancy filaments and abrupt switching 

behavior. To solve this problem, we developed a defect 

engineering based methodology to control the generation 

and recovery of oxygen vacancies, as illustrated in Fig.2 [4]. 

After optimization design by the methodology, both set and 

reset processes show gradual multilevel switching behav-

iors, as shown in Fig.3 [4].  

Fig.4 shows the synaptic training process of the Gd 

doped-HfOx devices optimized by the methodology [5]. 

Identical pulses are applied on the devices to imitate exo-

teric stimulations, and the resistance changes of the devices 

under the pulse operations. Set and reset processes corre-

spond to the long-term potentiation (LTP) and long-term 

depression (LTD), respectively. 

3. Design of Neuromorphic System 

Fig.5(a) illustrates the established neuromorphic visual 

system with a winner-take-all architecture (Fig.5(b)) and 

TMO-ReRAM based synapses [2]. The neurons in the 1st 

layer (representing retina) fire according to the light inten-

sity of the input pattern, and send pulse to the neurons in 

the 2nd layer (representing visual cortex) through synapses. 

The cortex neurons sum and integrate the input currents, 

and the neuron with the largest input current fires first, 

which inhibits all the other neurons from firing. Then the 

winner neuron sends pulse back to all the retina neurons to 

modulate the weighting of synapses. The task for the sys-

tem is to classify the face orientation of different persons in 

the camera images, as shown in Fig.5(c) [6]. 

Fig.5(d) shows the conductance map of different faces 

on ReRAM arrays. Due to the resistance fluctuation during 

training process as shown in Fig.6(a) [7], noises can be 

observed on the conductance map, which leads to the deg-

radation of pattern recognition accuracy. Fig.6(b) shows 

that the recognition accuracy decreases with the variation. 

One way to solve the accuracy degradation issue is to use 

the mean value of several devices. Fig.6(b) shows that the 

accuracy increases significantly with the number of devices 

[7]. To realize such a function, we developed a 3D ReRAM 

array with vertical devices, as illustrated in Fig.7. Each 

device can be randomly accessed based on the designed 

training scheme [8]. ReRAM devices on different layers 

with the same pillar work as one synaptic cell. These de-

vices receive the same training pulses at the same time. Fig. 

8 shows the measured training process on the fabricated 

two layered array (see inset). Two devices on the same pil-

lar are trained and read at the same time. Significant accu-

racy improvement can be achieved [6]. 

To reduce energy consumption during training process, 

the generation of oxygen vacancies should be carefully 

controlled to achieve thin filament. Fig.9 shows that when 

the initial resistance is set to ~1MΩ, the energy per spike 

can be reduced to less than 0.3pJ [6]. 

4. Summary 

   Device level and system level design methodologies are 

provided to realize high accuracy pattern recognition on the 

ReRAM based neuromorphic visual systems. The achieve-

ments boost the application of neuromorphic computing. 
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Fig. 1 Schematic view of neural network 

and TMO-ReRAM based artificial neural 

network. A neural network is consisted of 

neurons and synapses. ReRAM array 

works as synapses to modify the connect 

strength between pre- and post- neurons. 

Fig. 2 Schematics of methodology to 

achieve controlled oxygen vacancy distri-

bution and multilevel switching behavior 

based on defect engineering. Innovative cell 

design and operation scheme implementa-

tion are developed. 

Fig. 3 Typical resistive switching I-V curve 

of TMO-ReRAM cell before and after opti-

mization. For undoped HfOx device, abrupt 

set process is observed. Whereas, after opti-

mization by doping, multilevel set and reset 

processes are both easy to realize.  

 

  

Fig. 4 Measured resistance as a function of 

cumulative pulse time for TiN/Gd:HfOx/Pt 

ReRAM device during (a) set and (b) reset 

process. Multilevel synaptic training pro-

cesses are observed. Different amplitudes 

of pulses are used. Training speed increas-

es with pulse amplitude. 
 

Fig. 5 (a) Schematic of a neuromorphic 

visual system consisting two layers of neu-

rons. (b) An implementation of neuron 

circuit with TMO-ReRAM synapses. (c) 

Training samples used in the visual system. 
(d) Simulated final resistance maps of 

TMO-ReRAM with each cortex neuron 

after training. 

Fig. 6 (a) Measured and simulated multilevel 

reset training process by 400 identical con-

secutive pulses. (b) Simulated pattern recog-

nition accuracy of the visual system by par-

alleling several TMO-ReRAM devices 

working as a synapse together. A significant 

improvement is observed as the device 

number increasing. 
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Fig. 7 Schematic of 3D vertical ReRAM 

array architecture to immunize resistance 

variation during synaptic training process. 

The devices with the same pillar electrode 

can be viewed as a synapse. More devices 

can be introduced as a combined synapse 

by increasing horizontal layers. 

Fig. 8 Measured training process of the top 

and bottom ReRAM devices in the 3D ver-

tical array by applying 800 identical con-

secutive pulses. Pulses applied on the two 

devices with the same vertical electrode at 

the same time. Inset: TEM image of the 

fabricated 3D vertical ReRAM cells. 

Fig. 9 Measured training process for the 

fabricated 3D vertical synaptic device with 

different initial resistance states achieved by 

different current compliances during the 

previous set cycles. If starting at 1 MΩ, the 

maximum energy consumption per spike 

drops below 1 pJ. 
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