# Low power switching of Si-doped Ta<sub>2</sub>O<sub>5</sub> ReRAM for high density memory application

Beom Yong Kim, Kee Jeung Lee, Su Ock Chung, Soo Gil Kim, and Hyeong Soo Kim

New Memory Process Group, R&D division SK hynix Semiconductor Inc., San136-1, Ami-ri, Bubal-eub, Icheon-si, Gyeonggi-do, 467-701, Korea Phone: +81-31-639-4386 E-mail: beomyong2.kim@sk.com

## Abstract

We report, for the first time, the resistive switching properties of Si-doped  $Ta_2O_5$  grown by atomic layer deposition. The low power operation is successfully demonstrated in the Si-doped  $Ta_2O_5$  ReRAM devices of 50nm tech node. The switching mechanism for the Si-doped  $Ta_2O_5$  resistor is discussed. Si dopants enable a switching layer to have conformal distribution of oxygen vacancy and easily form conductive filament.

## 1. Introduction

In order to be more competitive for high density memory application, ReRAM cells are required to low operation current below 10µA [1]. Ta<sub>2</sub>O<sub>5</sub> is the widely used material for ReRAM due to its good endurance [2-3]. However, the operation current is still high level  $(50-100\mu A)$ . Recently, it is reported that the good switching performance was obtained using defect engineering such as oxygen reduction or impurity implantation [4-5]. However, these defect engineering technologies may have fundamental limitations for application of multi-plane and 3D vertical type structures. Thus, the defect engineering process during the film deposition is much more desirable. We predict that silicon doping would be advantageous to oxygen vacancy  $(V_0)$  formation in Ta<sub>2</sub>O<sub>5</sub> film because of the chemical valence difference between Ta<sup>5+</sup> and Si<sup>4+</sup> [5]. In this study, we demonstrated the switching properties of Si-doped Ta<sub>2</sub>O<sub>5</sub> using atomic layer deposition (ALD). Moreover, oxygen reduction of Ta<sub>2</sub>O<sub>5</sub> by hydrogen plasma treatment (HP) was conducted as a comparison.

## 2. Device Fabrication and experiment

The amount of Si doping in  $Ta_2O_5$  is controlled by the ratio of  $Ta_2O_5$  and SiO<sub>2</sub> ALD subcycles (Fig. 1). Fig. 2 shows the process flow of the fabricated ReRAM structure with 50nm tech node.  $Ti_4O_7$  is taken for a reservoir layer.  $Ta_2O_5$  reduced by hydrogen plasma treatment ( $Ta_2O_5$ -HP) was also formed to compare with Si-doped  $Ta_2O_5$ .

## 3. Results and discussion

Table I shows the composition of Si-doped  $Ta_2O_5$  with  $Ta_2O_5/SiO_2$  subcycle ratios. Fig. 3(a) shows XPS Ta5f spectra. In case of  $Ta_2O_5$ -HP, the surface of  $Ta_2O_5$  was reduced. However, there are no noticeable changes in Si-doped  $Ta_2O_5$  with the increase of Si doping concentration. On the other hand, for Si2p XPS spectra as shown in Fig. 3(b), SiO<sub>x</sub> was formed and the peak intensity of SiO<sub>x</sub> increased as the increase of Si content. This result in turn

confirms the idea that oxygen vacancies can be generated by utilizing ALD  $SiO_2$  and  $Ta_2O_5$  subcycles. Thermodynamic approach explains that Ta could consume oxygen from  $SiO_2$  and therefore form  $SiO_x$  having  $V_0$  (Eq. (1), (2)).

DC I-V switching characteristics as a function of compliance current (CC) were measured for the Ta<sub>2</sub>O<sub>5</sub>-HP and Si-doped (2.4% atomic percent) Ta<sub>2</sub>O<sub>5</sub> resistor stacks. In case of Ta<sub>2</sub>O<sub>5</sub>-HP, on/off current ratio (I<sub>on</sub>/I<sub>off</sub>) of 4.4 was achieved at 20 $\mu$ A CC but resistive switching did not occur at lower CC, 5 $\mu$ A (Fig. 4). Surprisingly, Si-doped Ta<sub>2</sub>O<sub>5</sub> stack shows the improved switching (I<sub>on</sub>/I<sub>off</sub> >5) not only at 20 $\mu$ A CC but also at 5 $\mu$ A CC (Fig. 5-6). In addition, the endurance property was not degraded up to 80000 cycles, as shown in Fig. 7.

From linear fitting of high resistance state (HRS), Si-doped Ta<sub>2</sub>O<sub>5</sub> shows the better linearity of Poole-Frenkel emission fitting than Ta<sub>2</sub>O<sub>5</sub>-HP (Fig. 8, 9). Moreover, Si-doped Ta<sub>2</sub>O<sub>5</sub> has higher low resistance state (LRS) current than Ta<sub>2</sub>O<sub>5</sub>-HP, while there is little difference in HRS currents (Fig. 10). This indicates that a conductive filament in Si-doped Ta<sub>2</sub>O<sub>5</sub> film is easily formed during set-process. In case of Ta<sub>2</sub>O<sub>5</sub>-HP stack, it is difficult to form filament due to insufficient V<sub>o</sub> drift energy at low operation current (CC <20µA) (Fig. 11(a)). On the other hand, for Si-doped Ta<sub>2</sub>O<sub>5</sub> stack, V<sub>o</sub> migrates not only from Ti<sub>4</sub>O<sub>7</sub> but also from Si-doped Ta<sub>2</sub>O<sub>5</sub> films (Fig. 11(b)). Thus, Si-doped Ta<sub>2</sub>O<sub>5</sub> could form filament and increase on/off current ratio at even low current.

## 4. Conclusion

We reported, for the first time, the switching behaviors of Si-doped Ta<sub>2</sub>O<sub>5</sub> ReRAM grown by ALD. It exhibited low power switching (I<sub>on</sub>/I<sub>off</sub> >5 at 5 $\mu$ A CC) and good endurance (>8000cycles). Systematic analysis clearly explains the switching mechanism of Si-doped Ta<sub>2</sub>O<sub>5</sub> that the conformal distribution of V<sub>o</sub> in Si-doped Ta<sub>2</sub>O<sub>5</sub> film allows a boost in on/off ratio and operation current scaling, which makes this ALD Si-doped Ta<sub>2</sub>O<sub>5</sub> promising for future high density and 3D type ReRAM applications.

#### References

- [1] B. Govoreanu et al., IEDM Tech. Dig., pp 10.2.1, (2013)
- [2] Z. Wei et al., IEDM Tech. Dig., pp 1, (2008)
- [3] B. Y. Kim et al., Jpn. J. Appl. Phys. 52 04CD05 (2013)
- [4] Y.Y. Chen et al., IEEE Electron Device Lett. Vol. 33, pp 483 (2012)
- [5] H. Zhang et al,. Appl. Phys. Lett. 96, 123502 (2010)





Fig. 3. XPS spectra of  $Ta_2O_5$ , Si-doped  $Ta_2O_5$ , and  $Ta_2O_5$ -HP. (a) Ta 5f, (b) Si 2p.

TABLE I. The composition of Si doped  $Ta_2O_5$  with  $Ta_2O_5$  and  $SiO_2$  subcycle ratio.

| TaO/SiO<br>Cycle Ratio | Atomic percent (%) |     |      |
|------------------------|--------------------|-----|------|
|                        | 0                  | Si  | Та   |
| 2:1                    | 71.9               | 6.6 | 21.5 |
| 5:1                    | 73.1               | 2.4 | 24.5 |
| 8:1                    | 72.9               | 1.6 | 25.5 |



Fig. 4. The switching results after the fifth I-V sweeps for  $Ta_2O_5$ -HP with compliance current (CC). (a) 20 $\mu$ A CC, (b) 5 $\mu$ A CC. On/off current ratio was measured at 0.7V.



Fig. 6. On/off current ratios as a function of CC for Si-doped  $Ta_2O_5$  and  $Ta_2O_5\text{-HP}$  cells.



Fig. 8. Linear fitting of HRS from 5<sup>th</sup> cycle of switching I-V. (a)  $Ta_2O_5$ -HP, (b) Si doped  $Ta_2O_5$ .



AC Cycle Number

Fig. 7. AC endurance characteristics of Si-doped  $Ta_2O_5\ stack.$ 



Fig. 9. Schematic band diagrams of (a)  $Ta_2O_5$ -HP and (b) Si-doped  $Ta_2O_5$  stack in HRS.



Fig. 2. (a) Crosssection TEM image of the fabricated ReRAM structure and (b) process flow. The bottom electrode contact (BEC) size is 50 nm





Fig. 5. The switching results after the fifth I-V sweeps for Si-doped (2.4% atomic percent)  $Ta_2O_5$  with CC. (a) 20 $\mu$ A CC, (b) 5 $\mu$ A CC.



Current@0.7V (µA)

Fig. 10. HRS and LRS currents of Si doped  $Ta_2O_5$  and  $Ta_2O_5$ -HP cells.



Fig. 11. Switching mechanism (a)  $Ta_2O_5$ -HP resistor, (b) Si doped  $Ta_2O_5$  resistor.