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Abstract

We report, for the first time, the resistive switching
properties of Si-doped Ta,Os; grown by atomic layer
deposition. The low power operation is successfully
demonstrated in the Si-doped Ta,0; ReRAM devices of
50nm tech node. The switching mechanism for the
Si-doped Ta,Os resistor is discussed. Si dopants enable a
switching layer to have conformal distribution of oxy-
gen vacancy and easily form conductive filament.

1. Introduction

In order to be more competitive for high density
memory application, ReRAM cells are required to low op-
eration current below 10pA [1]. Ta,Os is the widely used
material for ReRAM due to its good endurance [2-3].
However, the operation current is still high level
(50-100pA). Recently, it is reported that the good switching
performance was obtained using defect engineering such as
oxygen reduction or impurity implantation [4-5]. However,
these defect engineering technologies may have fundamen-
tal limitations for application of multi-plane and 3D vertical
type structures. Thus, the defect engineering process during
the film deposition is much more desirable. We predict that
silicon doping would be advantageous to oxygen vacancy
(V,) formation in Ta,Os film because of the chemical va-
lence difference between Ta " and Si** [5]. In this study, we
demonstrated the switching properties of Si-doped Ta,Os
using atomic layer deposition (ALD). Moreover, oxygen
reduction of Ta,0s by hydrogen plasma treatment (HP) was
conducted as a comparison.

2. Device Fabrication and experiment

The amount of Si doping in Ta,Os is controlled by the
ratio of Ta,0s and SiO, ALD subcycles (Fig. 1). Fig. 2
shows the process flow of the fabricated ReRAM structure
with 50nm tech node. Ti O is taken for a reservoir layer.
Ta,0s5 reduced by hydrogen plasma treatment (Ta,Os-HP)
was also formed to compare with Si-doped Ta,Os.

3. Results and discussion

Table I shows the composition of Si-doped Ta,Os with
Ta,05/Si0, subcycle ratios. Fig. 3(a) shows XPS TaSf
spectra. In case of Ta,0s-HP, the surface of Ta,O5 was re-
duced. However, there are no noticeable changes in
Si-doped Ta,0Os with the increase of Si doping concentra-
tion. On the other hand, for Si2p XPS spectra as shown in
Fig. 3(b), SiO, was formed and the peak intensity of SiOy
increased as the increase of Si content. This result in turn

confirms the idea that oxygen vacancies can be generated
by utilizing ALD SiO, and Ta,0Os subcycles. Thermody-
namic approach explains that Ta could consume oxygen
from Si0O, and therefore form SiO, having V, (Eq. (1), (2)).

DC I-V switching characteristics as a function of com-
pliance current (CC) were measured for the Ta,Os-HP and
Si-doped (2.4% atomic percent) Ta,Os resistor stacks. In
case of Ta,Os-HP, on/off current ratio (Io,/Iof) of 4.4 was
achieved at 20pA CC but resistive switching did not occur
at lower CC, 5pA (Fig. 4). Surprisingly, Si-doped Ta,Os
stack shows the improved switching (I,,/I,¢ >5) not only at
20pA CC but also at SpA CC (Fig. 5-6). In addition, the
endurance property was not degraded up to 80000 cycles,
as shown in Fig. 7.

From linear fitting of high resistance state (HRS),
Si-doped Ta,Os shows the better linearity of Poole-Frenkel
emission fitting than Ta,Os-HP (Fig. 8, 9). Moreover,
Si-doped Ta,Os has higher low resistance state (LRS) cur-
rent than Ta,0s-HP, while there is little difference in HRS
currents (Fig. 10). This indicates that a conductive filament
in Si-doped Ta,Os film is easily formed during set-process.
In case of Ta,Os-HP stack, it is difficult to form filament
due to insufficient V, drift energy at low operation current
(CC <20pA) (Fig. 11(a)). On the other hand, for Si-doped
Ta,0s stack, V, migrates not only from Ti,O but also from
Si-doped Ta,0s because V, may uniformly distribute in the
Si-doped Ta,Os films (Fig. 11(b)). Thus, Si-doped Ta,0s
could form filament and increase on/off current ratio at
even low current.

4. Conclusion

We reported, for the first time, the switching behaviors
of Si-doped Ta,Os ReRAM grown by ALD. It exhibited
low power switching (I,,/Io >5 at SpA CC) and good en-
durance (>8000cycles). Systematic analysis clearly ex-
plains the switching mechanism of Si-doped Ta,Os that the
conformal distribution of V, in Si-doped Ta,Os film allows
a boost in on/off ratio and operation current scaling, which
makes this ALD Si-doped Ta,0s promising for future high
density and 3D type ReRAM applications.
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Fig. 1. ALD process consisting of Ta,Os and SiO, subcycles
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Fig. 3. XPS spectra of Ta,0s, Si-doped Ta,Os, and Ta,Os-HP.

(a) Ta 5f, (b) Si 2p.
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Fig. 11. Switching mechanism (a) Ta,Os-HP
resistor, (b) Si doped Ta,Os resistor.



